2.3) Conservation of mechanical energy and the workenergy principle

Worked example	Your turn
A smooth plane is inclined at 60° to the horizontal. A particle of mass $1 kg$ slides down a line of greatest slope of the plane. The particle starts from rest at point A and passes point B with a speed of $12 ms^{-1}$. Find the distance AB.	A smooth plane is inclined at 30° to the horizontal. A particle of mass $0.5 kg$ slides down a line of greatest slope of the plane. The particle starts from rest at point A and passes point B with a speed of $6 ms^{-1}$. Find the distance AB.
	3.67 <i>m</i> (3 sf)

Worked example	Your turn
A particle of mass 4 kg is projected with	A particle of mass 2 kg is projected with
speed 16 ms^{-1} up the line of greatest slope	speed 8 ms^{-1} up the line of greatest slope of
of a rough plane inclined at 30° to the	a rough plane inclined at 45° to the
horizontal. The coefficient of friction	horizontal. The coefficient of friction
between the particle and the plane is 0.8.	between the particle and the plane is 0.4.
Calculate the distance the particle travels up	Calculate the distance the particle travels up
the plane before coming to instantaneous	the plane before coming to instantaneous
rest.	rest. 3.30 m (3 sf)

Worked example	Your turn
A skier is moving downhill and passes point A on a ski run at 12 ms^{-1} . After descending 100 m vertically the run begins to ascend. When the skier has ascended 50 m to the point B her speed is 8 ms^{-1} . The skier and her skis have a combined mass of 55 kg. The total distance she travels from A to B is 2800 m. The non-gravitational resistances to motion are constant and have a total magnitude of 24 N. Calculate the work done by the skier.	A skier is moving downhill and passes point A on a ski run at 6 ms^{-1} . After descending 50 m vertically the run begins to ascend. When the skier has ascended 25 m to the point B her speed is 4 ms^{-1} . The skier and her skis have a combined mass of 55 kg. The total distance she travels from A to B is 1400 m. The non- gravitational resistances to motion are constant and have a total magnitude of 12 N. Calculate the work done by the skier.
	2700 I(f)

2780 J (3 sf)

Worked example	Your turn
Two particles, A and B, of mass m and $4m$ respectively, are attached to the ends of a light inextensible string. The particle A lies on a rough plane inclined at an angle α to	Two particles, A and B, of mass m and $2m$ respectively, are attached to the ends of a light inextensible string. The particle A lies on a rough plane inclined at an angle α to
the horizontal, where $\tan \alpha = \frac{5}{12}$. The string passes over a	the horizontal, where $\tan \alpha = \frac{3}{4}$. The string passes over a
small light smooth pulley P fixed at the top of the plane. The particle B hangs freely below P. The particles are released from rest with the string taut and the section of the strig from A to P parallel to a line of greatest slope of the plane. The coefficient of friction between A and the	small light smooth pulley P fixed at the top of the plane. The particle B hangs freely below P. The particles are released from rest with the string taut and the section of the strig from A to P parallel to a line of greatest slope of the plane. The coefficient of friction between A and the
plane is $\frac{3}{8}$. When each particle has moved a distance h, B	plane is $\frac{5}{8}$. When each particle has moved a distance h, B
 has not reached the ground and A has not reached P. a) Find an expression for the potential energy lost by the system when each particle has moved a distance h 	 has not reached the ground and A has not reached P. a) Find an expression for the potential energy lost by the system when each particle has moved a distance h
b) When each particle has moved a distance h , they are moving with speed v . Using the work-energy principle, find an expression for v^2 in the form kgh where k is a number.	b) When each particle has moved a distance h , they are moving with speed v . Using the work-energy principle, find an expression for v^2 in the form kgh where k is a number.
	a) $\frac{7mgh}{5}$ b) $v^2 = \frac{3}{5}gh$
	b) $v^2 = \frac{5}{5}gh$