2.3) Conservation of mechanical energy and the workenergy principle

Your turn

A smooth plane is inclined at 60° to the horizontal. A particle of mass 1 kg slides down a line of greatest slope of the plane. The particle starts from rest at point A and passes point B with a speed of $12 \mathrm{~ms}^{-1}$. Find the distance $A B$.

A smooth plane is inclined at 30° to the horizontal. A particle of mass 0.5 kg slides down a line of greatest slope of the plane. The particle starts from rest at point A and passes point B with a speed of $6 \mathrm{~ms}^{-1}$. Find the distance $A B$.

$$
3.67 \text { m (3 sf) }
$$

A particle of mass 4 kg is projected with speed $16 \mathrm{~ms}^{-1}$ up the line of greatest slope of a rough plane inclined at 30° to the horizontal. The coefficient of friction between the particle and the plane is o.8. Calculate the distance the particle travels up the plane before coming to instantaneous rest.

A particle of mass 2 kg is projected with speed $8 \mathrm{~ms}^{-1}$ up the line of greatest slope of a rough plane inclined at 45° to the horizontal. The coefficient of friction between the particle and the plane is 0.4 . Calculate the distance the particle travels up the plane before coming to instantaneous rest.
3.30 m (3 sf)

Your turn

A skier is moving downhill and passes point A on a ski run at $12 \mathrm{~ms}^{-1}$. After descending 100 m vertically the run begins to ascend. When the skier has ascended 50 m to the point B her speed is $8 \mathrm{~ms}^{-1}$. The skier and her skis have a combined mass of 55 kg . The total distance she travels from A to B is 2800 m . The non-gravitational resistances to motion are constant and have a total magnitude of 24 N. Calculate the work done by the skier.

A skier is moving downhill and passes point A on a ski run at $6 \mathrm{~ms}^{-1}$. After descending 50 m vertically the run begins to ascend. When the skier has ascended 25 m to the point B her speed is $4 \mathrm{~ms}^{-1}$. The skier and her skis have a combined mass of 55 kg . The total distance she travels from A to B is 1400 m . The nongravitational resistances to motion are constant and have a total magnitude of 12 N . Calculate the work done by the skier.

Worked example

Your turn

Two particles, A and B, of mass m and $4 m$ respectively, are attached to the ends of a light inextensible string. The particle A lies on a rough plane inclined at an angle α to the horizontal, where $\tan \alpha=\frac{5}{12}$. The string passes over a small light smooth pulley P fixed at the top of the plane. The particle B hangs freely below P. The particles are released from rest with the string taut and the section of the strig from A to P parallel to a line of greatest slope of the plane. The coefficient of friction between A and the plane is $\frac{3}{8}$. When each particle has moved a distance h, B has not reached the ground and A has not reached P.
a) Find an expression for the potential energy lost by the system when each particle has moved a distance h
b) When each particle has moved a distance h, they are moving with speed v. Using the work-energy principle, find an expression for v^{2} in the form kgh where k is a number.

Two particles, A and B, of mass m and $2 m$ respectively, are attached to the ends of a light inextensible string. The particle A lies on a rough plane inclined at an angle α to the horizontal, where $\tan \alpha=\frac{3}{4}$. The string passes over a small light smooth pulley P fixed at the top of the plane. The particle B hangs freely below P. The particles are released from rest with the string taut and the section of the strig from A to P parallel to a line of greatest slope of the plane. The coefficient of friction between A and the plane is $\frac{5}{8}$. When each particle has moved a distance $h, \mathrm{~B}$ has not reached the ground and A has not reached P.
a) Find an expression for the potential energy lost by the system when each particle has moved a distance h
b) When each particle has moved a distance h, they are moving with speed v. Using the work-energy principle, find an expression for v^{2} in the form kgh where k is a number.
a) $\frac{7 m g h}{5}$
b) $v^{2}=\frac{3}{5} g h$

