2.3) Composite functions

Worked example

Your turn

$$
f(x)=3 x-2, \text { and } g(x)=x^{2}-4
$$

$$
f(x)=3 x+2, \text { and } g(x)=x^{2}+4
$$

Find:
\(\left.f g(x) \quad \begin{array}{c}f g(x)

g f(x)

f^{2}(x)

g(x)=3 x^{2}+14\end{array}\right]\)| $g f(x)$ |
| :---: |
| $g f(x)=9 x^{2}+12 x+8$ |
| $f^{2}(x)$ |
| $f^{2}(x)=9 x+8$ |
| $g^{2}(x)$ |
| $g^{2}(x)=x^{4}+8 x^{2}+20$ |

Worked example

Your turn

$$
f(x)=3 x-2, \text { and } g(x)=x^{2}-4
$$

Find:

$f g(1)$	$f g(4)$
$g f(-2)$	62
$f^{2}(3)$	$g f(-3)$
	53
$g^{2}(-4)$	$f^{2}(2)$
	26
	$g^{2}(-1)$
29	

Worked example

Your turn

$$
f(x)=3 x-2, \text { and } g(x)=x^{2}-4
$$

$$
f(x)=3 x+2, \text { and } g(x)=x^{2}+4
$$

Solve:

$$
f g(a)=13
$$

$$
g f(b)=12
$$

$$
\begin{gathered}
g f(b)=293 \\
b=5, b=-\frac{19}{3}
\end{gathered}
$$

Worked example

Your turn

The functions f and g are defined by

$$
\begin{aligned}
& f: x \rightarrow|3 x-12| \\
& g: x \rightarrow \frac{x+2}{3}
\end{aligned}
$$

a) Find $f g(2)$
b) Solve $f g(x)=x$

The functions f and g are defined by

$$
\begin{aligned}
& f: x \rightarrow|2 x-8| \\
& g: x \rightarrow \frac{x+1}{2}
\end{aligned}
$$

a) Find $f g(3)$
b) Solve $f g(x)=x$
a) 4
b) $x=\frac{7}{2}$

Your turn

The function g is defined by

$$
g: x \rightarrow 4-3 x, \quad x \in \mathbb{R}
$$

Solve the equation

$$
g^{2}(x)+[g(x)]^{2}=0
$$

The function g is defined by

$$
g: x \rightarrow 3-4 x, \quad x \in \mathbb{R}
$$

Solve the equation

$$
\begin{gathered}
g^{2}(x)+[g(x)]^{2}=0 \\
x=0, x=\frac{1}{2}
\end{gathered}
$$

Your turn

The functions f and g are defined by

$$
\begin{array}{ll}
f: x \rightarrow e^{x}+3, & x \in \mathbb{R} \\
g: x \rightarrow \ln x, & x>0
\end{array}
$$

Find $f g(x)$, giving your answer in its simplest form.

The functions f and g are defined by

$$
\begin{array}{ll}
f: x \rightarrow e^{3 x}-2, & x \in \mathbb{R} \\
g: x \rightarrow 4 \ln (x+1), & x>-1
\end{array}
$$

Find $f g(x)$, giving your answer in its simplest form.

The functions f and g are defined by

$$
\begin{array}{ll}
f: x \rightarrow e^{2 x}+4, & x \in \mathbb{R} \\
g: x \rightarrow 3 \ln (x-1), & x>1
\end{array}
$$

Find $f g(x)$, giving your answer in its simplest form

$$
f g(x)=(x-1)^{6}+4
$$

Worked example

Your turn

The functions f and g are defined by
$f: x \rightarrow 2^{x}+3, \quad x \in \mathbb{R}$

$$
g: x \rightarrow \log _{2} x, \quad x>0
$$

Find $f g(x)$, giving your answer in its simplest form.

The functions f and g are defined by

$$
\begin{array}{ll}
f: x \rightarrow 3^{2 x}-1, & x \in \mathbb{R} \\
g: x \rightarrow 4 \log _{3}(x+5), & x>-5
\end{array}
$$

Find $f g(x)$, giving your answer in its simplest form.

The functions f and g are defined by

$$
\begin{array}{ll}
f: x \rightarrow 2^{3 x}+4, & x \in \mathbb{R} \\
g: x \rightarrow 5 \log _{2}(x-1), & \\
x>1
\end{array}
$$

Find $f g(x)$, giving your answer in its simplest form

$$
f g(x)=(x-1)^{15}+4
$$

Your turn

$$
f(x)=\frac{1}{x-1}, x \neq 1
$$

Find an expression for $f^{2}(x)$ and $f^{3}(x)$

$$
f(x)=\frac{1}{x+1}, x \neq-1
$$

Find an expression for $f^{2}(x)$ and $f^{3}(x)$

$$
\begin{gathered}
f^{2}(x)=\frac{x+1}{x+2}, x \neq-1, x \neq-2 \\
f^{3}(x)=\frac{x+2}{2 x+3}, x \neq-1, x \neq-2, x \neq-\frac{3}{2}
\end{gathered}
$$

Your turn

A function f has domain $-3 \leq x \leq 12$ and is linear from $(-3,9)$ to $(0,6)$ and from $(0,6)$ to $(12,10)$. Find the value of $f^{2}(0)$

A function f has domain $-4 \leq x \leq 13$ and is linear from $(-4,9)$ to $(0,5)$ and from $(0,5)$ to $(13,31)$.
Find the value of $f^{2}(0)$

