2.3) Composite functions

Worked example	Your turn
$f(x) = 3x - 2$, and $g(x) = x^2 - 4$	$f(x) = 3x + 2$, and $g(x) = x^2 + 4$
Find: $fg(x)$	Find: $fg(x)$ $fg(x) = 3x^2 + 14$
gf(x)	$gf(x)$ $gf(x) = 9x^2 + 12x + 8$
$f^2(x)$	$f^{2}(x)$ $f^{2}(x) = 9x + 8$
$g^2(x)$	$g^{2}(x)$ $g^{2}(x) = x^{4} + 8x^{2} + 20$

Worked example	Your turn
$f(x) = 3x - 2$, and $g(x) = x^2 - 4$ Find:	$f(x) = 3x + 2$, and $g(x) = x^2 + 4$
find: $fg(1)$	Find: <i>fg</i> (4) <u>62</u>
<i>gf</i> (-2)	<i>gf</i> (-3) 53
f ² (3)	f ² (2) 26
<i>g</i> ² (-4)	<i>g</i> ² (-1) 29

Worked example	Your turn
$f(x) = 3x - 2$, and $g(x) = x^2 - 4$ Solve:	$f(x) = 3x + 2$, and $g(x) = x^2 + 4$ Find:
solve: $fg(a) = 13$	Find: $fg(a) = 62$ $a = \pm 4$
gf(b) = 12	gf(b) = 293 $b = 5, b = -\frac{19}{3}$

Worked example	Your turn
The functions f and g are defined by $f: x \rightarrow 3x - 12 $ $g: x \rightarrow \frac{x+2}{3}$ a) Find fg(2) b) Solve fg(x) = x	The functions f and g are defined by $f: x \rightarrow 2x - 8 $ $g: x \rightarrow \frac{x+1}{2}$ a) Find fg(3) b) Solve fg(x) = x a) 4 b) $x = \frac{7}{2}$

Worked example	Your turn
The function g is defined by $g: x \to 4 - 3x, x \in \mathbb{R}$ Solve the equation $g^2(x) + [g(x)]^2 = 0$	The function g is defined by $g: x \to 3 - 4x, x \in \mathbb{R}$ Solve the equation $g^2(x) + [g(x)]^2 = 0$ $x = 0, x = \frac{1}{2}$

Worked example	Your turn
The functions f and g are defined by $f: x \to e^x + 3, x \in \mathbb{R}$ $g: x \to \ln x, x > 0$ Find $fg(x)$, giving your answer in its simplest form.	The functions f and g are defined by $f: x \to e^{2x} + 4, \qquad x \in \mathbb{R}$ $g: x \to 3\ln(x-1), \qquad x > 1$ Find $fg(x)$, giving your answer in its simplest form
	$fg(x) = (x-1)^6 + 4$
The functions f and g are defined by $f: x \to e^{3x} - 2, \qquad x \in \mathbb{R}$ $g: x \to 4\ln(x+1), \qquad x > -1$ Find $fg(x)$, giving your answer in its simplest form.	

Worked example	Your turn
The functions f and g are defined by $f: x \to 2^x + 3, x \in \mathbb{R}$ $g: x \to \log_2 x, x > 0$ Find $fg(x)$, giving your answer in its simplest form.	The functions f and g are defined by $f: x \to 2^{3x} + 4, \qquad x \in \mathbb{R}$ $g: x \to 5 \log_2(x - 1), \qquad x > 1$ Find $fg(x)$, giving your answer in its simplest form
	$fg(x) = (x - 1)^{15} + 4$
The functions f and g are defined by $f: x \to 3^{2x} - 1, \qquad x \in \mathbb{R}$ $g: x \to 4 \log_3(x + 5), \qquad x > -5$ Find $fg(x)$, giving your answer in its simplest form.	

Worked example

$$f(x) = \frac{1}{x-1}, x \neq 1$$

Find an expression for $f^{2}(x)$ and $f^{3}(x)$

Your turn

$$f(x) = \frac{1}{x+1}, x \neq -1$$

Find an expression for $f^2(x)$ and $f^3(x)$

$$f^{2}(x) = \frac{x+1}{x+2}, x \neq -1, x \neq -2$$
$$f^{3}(x) = \frac{x+2}{2x+3}, x \neq -1, x \neq -2, x \neq -\frac{3}{2}$$

Worked example	Your turn
A function f has domain $-3 \le x \le 12$ and is linear from $(-3,9)$ to $(0,6)$ and from $(0,6)$ to $(12,10)$. Find the value of $f^2(0)$	A function f has domain $-4 \le x \le 13$ and is linear from $(-4, 9)$ to $(0, 5)$ and from $(0, 5)$ to $(13, 31)$. Find the value of $f^2(0)$
	15