2.2) Functions and mappings

Worked example	Your turn
 State whether: the mapping is one-to-one, many-to-one, or one-to-many the mapping is a function <i>f</i>(<i>x</i>) = 2<i>x</i> − 3, <i>x</i> ∈ ℝ <i>x</i> ∈ ℝ <i>x</i> ∈ ℝ <i>f</i>(<i>x</i>) = 2<i>x</i> − 3, <i>x</i> ∈ ℝ <i>x</i> ∈ ℝ <i>f</i>(<i>x</i>) = 2<i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> − 3, <i>x</i> − 3, <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i>	 State whether: the mapping is one-to-one, many-to-one, or one-to-many the mapping is a function <i>p</i>(<i>x</i>) = <i>x</i>³, <i>x</i> ∈ ℝ One-to-one: a function
$g(x) = x^2, \qquad x \in \mathbb{R}$	$q(x) = \left \frac{1}{x}\right , x \in \mathbb{R}$ Many-to-one: Not a function
$h(x) = \frac{1}{x}, \qquad x \in \mathbb{R}$	$r(x) = \sqrt{x}, x \in \mathbb{R}, x \ge 0, \qquad x \in \mathbb{R}$ One-to-one: a function
$i(x) = \sqrt{x}, \qquad x \in \mathbb{R}$	$s(x) = \pm \sqrt{x}, x \in \mathbb{R}, x \ge 0$ One-to-many: Not a function

Worked example	Your turn
Write down the largest possible domain for:	Write down the largest possible domain for:
$f(x) = \frac{1}{x - 3}$	$p(x) = \frac{6}{x+4}$
	$x \neq -4$
$g(x) = \frac{2}{7x - 21}$	$q(x) = \frac{7}{5x + 20}$ $x \neq -4$
$h(x) = \frac{3}{2x^2 - x - 3}$	$r(x) = \frac{8}{3x^2 + 10x - 8}$
$i(x) = \frac{4x + 5}{x^2 - 64}$	$x \neq \frac{2}{3}, x \neq -4$ $s(x) = \frac{9x - 10}{x^2 - 16}$
$x^2 - 04$	$x^2 - 16$ $x \neq -4, x \neq 4$

Worked example	Your turn
Write down the largest possible domain for: $f(x) = \sqrt{x-3}$	Write down the largest possible domain for: $p(x) = \sqrt{x+4}$ $x \ge -4$
$g(x) = \sqrt{7x - 21}$	$q(x) = \sqrt{5x + 20}$ $x \ge -4$
$h(x) = \sqrt{7x + 21}$	$r(x) = \sqrt{5x - 20}$ $x \ge 4$
$i(x) = \sqrt{21 - 7x}$	$s(x) = \sqrt{20 - 5x}$ $x \le 4$

Worked example	Your turn
Write down the largest possible domain for: $f(x) = \frac{\sqrt{x+3}}{x^2 - 2x}$	Write down the largest possible domain for: $h(x) = \frac{\sqrt{x+4}}{x^4 - 25x^2}$
$g(x) = \frac{x^3 - 2x^2}{\sqrt{x^2 + 5x + 6}}$	$x \ge -4, x \neq 0, x \neq 5$

Worked example	Your turn
Find the range of the following functions: $f(x) = 2x - 3, x = \{1, 2, 3, 4\}$	Find the range of the following functions: $p(x) = 3x - 2, x = \{1, 2, 3, 4\}$
	$p(x) = \{1, 4, 7, 10\}$
$g(x) = 3 - 2x, \qquad x \in \mathbb{R}, x \le 0$	$q(x) = 2 - 3x, \qquad x \in \mathbb{R}, x > 0$ $q(x) < 2$
$h(x) = 3 - 2x, x \in \mathbb{R}, 2 < x < 5$	$r(x) = 2 - 3x, x \in \mathbb{R}, -3 < x \le 4$ $-10 \le r(x) < 11$

Worked example	Your turn
Find the range of the following functions: $f(x) = x^4$, $x = \{1, 2, 3, 4\}$	Find the range of the following functions: $p(x) = x^2, x = \{1, 2, 3, 4\}$
	$p(x) = \{1, 4, 9, 16\}$
$g(x) = x^4, \qquad x \in \mathbb{R}, x \le 0$	$q(x) = x^2, x \in \mathbb{R}, x > 0$ $q(x) > 0$
$h(x) = x^4, \qquad x \in \mathbb{R}, -2 \le x < 5$	$r(x) = x^2, \qquad x \in \mathbb{R}, -3 < x \le 4$ $0 \le r(x) \le 16$

Worked exampleYour turnFind the range of the following functions:
$$f(x) = \frac{1}{x}, \quad x = \{-1, -2, -3, -4\}$$
Find the range of the following functions: $g(x) = \frac{1}{x}, \quad x = \{-1, -2, -3, -4\}$ $p(x) = \frac{1}{x}, \quad x = \{1, 2, 3, 4\}$ $g(x) = \frac{1}{x-2}, \quad x \in \mathbb{R}, x \le 1$ $q(x) = \frac{1}{x+2}, \quad x \in \mathbb{R}, x > -1$ $q(x) = \frac{1}{x+3}, \quad x \in \mathbb{R}, -2 \le x < 5$ $r(x) = \frac{1}{x-5}, \quad x \in \mathbb{R}, -3 < x \le 4$ $-1 \le r(x) < -\frac{1}{8}$

Worked example	Your turn
Find the range of the following functions:	Find the range of the following functions:
$f(x) = \frac{1}{x}, \qquad x \in \mathbb{R}, x \neq 0$	$h(x) = \frac{1}{x} - 3, \qquad x \in \mathbb{R}, x \neq 0$
	$h(x) \in \mathbb{R}$
1	
$g(x) = \frac{1}{x} + 2, \qquad x \in \mathbb{R}, x \neq 0$	

Worked example	Your turn
Find the range of the following functions: $f(x) = e^x + 5, x \in \mathbb{R}$	Find the range of the following functions: $p(x) = e^x + 8, x \in \mathbb{R}$
	p(x) > 8
$g(x) = e^x - 4, \qquad x \in \mathbb{R}, x > 0$	$q(x) = e^{x} - 7, \qquad x \in \mathbb{R}, x < 0$ $-7 < x < -6$
$h(x) = -e^x - 3, \qquad x \in \mathbb{R}, x \le 0$	$r(x) = -e^{x} - 6, \qquad x \in \mathbb{R}, x \ge 0$ $r(x) \le -7$

Worked example	Your turn
Find the range of the following functions: $f(x) = \ln x + 5, x \in \mathbb{R}, x > 0$	Find the range of the following functions: $h(x) = \ln x + 3, x \in \mathbb{R}, x > 0$
	$h(x) \in \mathbb{R}$
$g(x) = \ln x - 4, \qquad x \in \mathbb{R}, x > 0$	

Worked example	Your turn
The function f is defined by $f: x \to x^2 - 8x + 3, x \in \mathbb{R}, 0 \le x \le 5$ Find the range of f .	The function <i>h</i> is defined by $h: x \to x^2 - 4x + 1, x \in \mathbb{R}, 0 \le x < 5$ Find the range of <i>h</i> . $-3 \le h(x) < 6$
The function f is defined by $g: x \to x^2 + 6x - 2, x \in \mathbb{R}, -5 < x \le 0$ Find the range of f .	

Worked example	Your turn
The function f is defined by $f(x) = x^2 - 8x + 27$ and has domain $x \ge a$. Given that $f(x)$ is a one-to-one function, find the smallest possible value of the constant a	The function <i>h</i> is defined by $h(x) = x^2 - 6x + 20$ and has domain $x \ge a$. Given that $f(x)$ is a one-to-one function, find the smallest possible value of the constant <i>a</i> a = 3
The function g is defined by $g(x) = x^2 + 4x + 15$ and has domain $x \le a$. Given that $g(x)$ is a one-to-one function, find the smallest possible value of the constant a	