2.2) Functions and mappings

Your turn

State whether:

- the mapping is one-to-one, many-to-one, or one-to-many
- the mapping is a function

$$
f(x)=2 x-3, \quad x \in \mathbb{R}
$$

$$
g(x)=x^{2}, \quad x \in \mathbb{R}
$$

State whether:

- the mapping is one-to-one, many-to-one, or one-to-many
- the mapping is a function

$$
p(x)=x^{3}, \quad x \in \mathbb{R}
$$

One-to-one: a function

$$
q(x)=\left|\frac{1}{x}\right|, \quad x \in \mathbb{R}
$$

Many-to-one: Not a function

$$
h(x)=\frac{1}{x}, \quad x \in \mathbb{R}
$$

$$
r(x)=\sqrt{x}, x \in \mathbb{R}, x \geq 0, \quad x \in \mathbb{R}
$$

One-to-one: a function

$$
i(x)=\sqrt{x}, \quad x \in \mathbb{R}
$$

$$
s(x)= \pm \sqrt{x}, x \in \mathbb{R}, x \geq 0
$$

One-to-many: Not a function

Write down the largest possible domain for:

$$
f(x)=\frac{1}{x-3}
$$

$$
g(x)=\frac{2}{7 x-21}
$$

$$
h(x)=\frac{3}{2 x^{2}-x-3}
$$

$$
i(x)=\frac{4 x+5}{x^{2}-64}
$$

Write down the largest possible domain for:

$$
\begin{gathered}
p(x)=\frac{6}{x+4} \\
x \neq-4 \\
q(x)=\frac{7}{5 x+20} \\
x \neq-4 \\
r(x)=\frac{8}{3 x^{2}+10 x-8} \\
x \neq \frac{2}{3}, x \neq-4 \\
s(x)=\frac{9 x-10}{x^{2}-16} \\
x \neq-4, x \neq 4
\end{gathered}
$$

Write down the largest possible domain for:

$$
f(x)=\sqrt{x-3}
$$

$$
g(x)=\sqrt{7 x-21}
$$

$$
h(x)=\sqrt{7 x+21}
$$

$$
i(x)=\sqrt{21-7 x}
$$

Write down the largest possible domain for:

$$
\begin{gathered}
p(x)=\sqrt{x+4} \\
x \geq-4 \\
\\
q(x)=\sqrt{5 x+20} \\
x \geq-4 \\
\\
\\
r(x)=\sqrt{5 x-20} \\
x \geq 4 \\
\\
s(x)=\sqrt{20-5 x} \\
x \leq 4
\end{gathered}
$$

Write down the largest possible domain for:

$$
f(x)=\frac{\sqrt{x+3}}{x^{2}-2 x}
$$

$$
g(x)=\frac{x^{3}-2 x^{2}}{\sqrt{x^{2}+5 x+6}}
$$

Write down the largest possible domain for:

$$
\begin{gathered}
h(x)=\frac{\sqrt{x+4}}{x^{4}-25 x^{2}} \\
x \geq-4, x \neq 0, x \neq 5
\end{gathered}
$$

Find the range of the following functions:

$$
f(x)=2 x-3, \quad x=\{1,2,3,4\}
$$

$$
g(x)=3-2 x, \quad x \in \mathbb{R}, x \leq 0
$$

$$
h(x)=3-2 x, \quad x \in \mathbb{R}, 2<x<5
$$

Find the range of the following functions:

$$
\begin{gathered}
p(x)=3 x-2, \quad x=\{1,2,3,4\} \\
p(x)=\{1,4,7,10\} \\
q(x)=2-3 x, \quad x \in \mathbb{R}, x>0 \\
q(x)<2
\end{gathered}
$$

$$
r(x)=2-3 x, \quad x \in \mathbb{R},-3<x \leq 4
$$

$$
-10 \leq r(x)<11
$$

Your turn

Find the range of the following functions:

$$
f(x)=x^{4}, \quad x=\{1,2,3,4\}
$$

Find the range of the following functions:

$$
\begin{gathered}
p(x)=x^{2}, \quad x=\{1,2,3,4\} \\
p(x)=\{1,4,9,16\}
\end{gathered}
$$

$$
g(x)=x^{4}, \quad x \in \mathbb{R}, x \leq 0
$$

$$
q(x)=x^{2}, \quad x \in \mathbb{R}, x>0
$$

$$
q(x)>0
$$

$$
h(x)=x^{4}, \quad x \in \mathbb{R},-2 \leq x<5
$$

$$
r(x)=x^{2}, \quad x \in \mathbb{R},-3<x \leq 4
$$

$$
0 \leq r(x) \leq 16
$$

Find the range of the following functions:

$$
f(x)=\frac{1}{x}, \quad x=\{-1,-2,-3,-4\}
$$

$$
g(x)=\frac{1}{x-2}, \quad x \in \mathbb{R}, x \leq 1
$$

$$
h(x)=\frac{1}{x+3}, \quad x \in \mathbb{R},-2 \leq x<5
$$

Find the range of the following functions:

$$
\begin{gathered}
p(x)=\frac{1}{x}, \quad x=\{1,2,3,4\} \\
p(x)=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right\} \\
q(x)=\frac{1}{x+2}, \quad x \in \mathbb{R}, x>-1 \\
q(x)<1 \\
r(x)=\frac{1}{x-5}, \quad x \in \mathbb{R},-3<x \leq 4 \\
-1 \leq r(x)<-\frac{1}{8}
\end{gathered}
$$

Your turn

Find the range of the following functions:

$$
f(x)=\frac{1}{x}, \quad x \in \mathbb{R}, x \neq 0
$$

Find the range of the following functions:

$$
\begin{gathered}
h(x)=\frac{1}{x}-3, \quad x \in \mathbb{R}, x \neq 0 \\
h(x) \in \mathbb{R}
\end{gathered}
$$

$$
g(x)=\frac{1}{x}+2, \quad x \in \mathbb{R}, x \neq 0
$$

Your turn

Find the range of the following functions:
$f(x)=e^{x}+5, \quad x \in \mathbb{R}$

$$
g(x)=e^{x}-4, \quad x \in \mathbb{R}, x>0
$$

Find the range of the following functions:

$$
\begin{gathered}
p(x)=e^{x}+8, \quad x \in \mathbb{R} \\
p(x)>8
\end{gathered}
$$

$$
q(x)=e^{x}-7, \quad x \in \mathbb{R}, x<0
$$

$$
-7<x<-6
$$

$$
h(x)=-e^{x}-3, \quad x \in \mathbb{R}, x \leq 0
$$

$$
\begin{gathered}
r(x)=-e^{x}-6, \quad x \in \mathbb{R}, x \geq 0 \\
r(x) \leq-7
\end{gathered}
$$

Worked example

Your turn

Find the range of the following functions:
$f(x)=\ln x+5, \quad x \in \mathbb{R}, x>0$
Find the range of the following functions:

$$
\begin{gathered}
h(x)=\ln x+3, \quad x \in \mathbb{R}, x>0 \\
h(x) \in \mathbb{R}
\end{gathered}
$$

$$
g(x)=\ln x-4, \quad x \in \mathbb{R}, x>0
$$

Your turn

The function f is defined by

$$
f: x \rightarrow x^{2}-8 x+3, \quad x \in \mathbb{R}, 0 \leq x \leq 5
$$ Find the range of f.

The function h is defined by
$h: x \rightarrow x^{2}-4 x+1, \quad x \in \mathbb{R}, 0 \leq x<5$
Find the range of h.

$$
-3 \leq h(x)<6
$$

Worked example

Your turn

The function f is defined by $f(x)=x^{2}-8 x+27$ and has domain $x \geq a$. Given that $f(x)$ is a one-to-one function, find the smallest possible value of the constant a

The function h is defined by $h(x)=x^{2}-6 x+20$ and has domain $x \geq a$. Given that $f(x)$ is a one-to-one function, find the smallest possible value of the constant a

$$
a=3
$$

