2.1) Set notation

Worked example	Your turn
A card is selected at random from a pack of 52 playing cards. Let <i>R</i> be the event that the card is a royal (king, queen or jack). Let <i>S</i> be the event that the card is a spade. Find: a) $P(R \cap S)$ b) $P(R \cup S)$ c) $P(R')$ d) $P(R' \cap S)$	A card is selected at random from a pack of 52 playing cards. Let A be the event that the card is an ace. Let D be the event that the card is a diamond. Find: a) $P(A \cap D)$ b) $P(A \cup D)$ c) $P(A')$ d) $P(A' \cap D)$ a) $\frac{1}{52}$ b) $\frac{16}{52}$ c) $\frac{48}{52}$ d) $\frac{12}{52}$

Worked example	Your turn
Given that: $P(A) = 0.5$ $P(B) = 0.2$ $P(A \cap B) = 0.1$	Given that: $P(A) = 0.3$ $P(B) = 0.4$ $P(A \cap B) = 0.25$
Explain why events A and B are independent	Explain why events A and B are not independent.
	If independent $P(A) \times P(B) = P(A \cap B)$ $0.3 \times 0.4 = 0.12 \neq 0.25$ $\therefore A$ and B are not independent.

Worked example	Your turn
Given that: $P(A) = 0.5$ $P(B) = 0.34$ $P(A \cap B) = 0.25$ $P(C) = 0.15$ A and C are mutually exclusive. Events B and C are independent. a) Draw a Venn diagram to illustrate the events A, B and C, showing the probabilities for each region. b) Find $P((C \cap B') \cup A)$	Your turnGiven that: $P(A) = 0.3$ $P(B) = 0.4$ $P(B) = 0.4$ $P(A \cap B) = 0.25$ $P(C) = 0.2$ A and C are mutually exclusive.Events B and C are independent.a) Draw a Venn diagram to illustrate theeventsA, B and C, showing the probabilities foreach region.b) Find $P((A \cap B') \cup C)$
	b) 0.25

p = 0.15

Worked example	Your turn
Events A and B are independent. P(A) = x P(B) = y Find: a) $P(A \cup B)$ b) $P(A' \cup B)$	Events A and B are independent. P(A) = x P(B) = y Find: a) $P(A \cap B)$ b) $P(A \cup B')$ a) xy b) $1 - y + xy$

- ξ = the whole sample space (1 to 6)
- A = even number on a die thrown

B = square number on a die thrown

State what it means in this context, and the resulting set of outcomes:

A'

Your turn

 ξ = the whole sample space (1 to 6)

- A = even number on a die thrown
- B = prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:

A'

Not A (the complement of A) Not rolling an even number {1, 3, 5}

- ξ = the whole sample space (1 to 6)
- A = even number on a die thrown
- B = square number on a die thrown
- State what it means in this context, and the resulting set of outcomes:

B'

Your turn

 ξ = the whole sample space (1 to 6)

- A = even number on a die thrown
- B = prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:

B' Not B (the complement of B) Not rolling a prime number {1, 4, 6}

- ξ = the whole sample space (1 to 6)
- A = even number on a die thrown

B = square number on a die thrown

State what it means in this context, and the resulting set of outcomes:

 $A \cup B$

Your turn

 ξ = the whole sample space (1 to 6)

- A = even number on a die thrown
- B = prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:

 $A \cup B$

A or B (the union of A and B) Rolling an even number or a prime number {2, 3, 4, 5, 6}

- ξ = the whole sample space (1 to 6)
- A = even number on a die thrown

B = square number on a die thrown

State what it means in this context, and the resulting set of outcomes:

 $A\cap B$

Your turn

 ξ = the whole sample space (1 to 6)

- A = even number on a die thrown
- B = prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:

 $A \cap B$

A and B (the intersection of A and B) Rolling a number which is even and prime {2}

- ξ = the whole sample space (1 to 6)
- A = even number on a die thrown

B = square number on a die thrown

State what it means in this context, and the resulting set of outcomes:

 $A\cap B'$

Your turn

 ξ = the whole sample space (1 to 6)

- A = even number on a die thrown
- B = prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:

 $A \cap B'$

A and not B Rolling a number which is even and not prime {4,6}

- ξ = the whole sample space (1 to 6)
- A = even number on a die thrown

B = square number on a die thrown

State what it means in this context, and the resulting set of outcomes:

 $A' \cap B$

Your turn

 ξ = the whole sample space (1 to 6)

A = even number on a die thrown

B = prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:

 $A' \cap B$

B and not A Rolling a number which is prime and not even {3, 5}

- ξ = the whole sample space (1 to 6)
- A = even number on a die thrown

B = square number on a die thrown

State what it means in this context, and the resulting set of outcomes:

 $(A \cup B)'$

Your turn

 ξ = the whole sample space (1 to 6)

- A = even number on a die thrown
- B = prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:

 $(A \cup B)'$

Not (A or B) Rolling a number which is not (even or prime) {1}

- ξ = the whole sample space (1 to 6)
- A = even number on a die thrown

B = square number on a die thrown

State what it means in this context, and the resulting set of outcomes:

 $(A \cap B)'$

Your turn

 ξ = the whole sample space (1 to 6)

- A = even number on a die thrown
- B = prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:

 $(A \cap B)'$

Not (A and B) Rolling a number which is not (even and prime) {1}

 $A \cap B' \cap C'$

Worked example	١
ξ = {Days of the week}	$\xi = \{Months$
A = {Tuesday,Thursday}	$A = \{Months$
B = {Days starting with S or T}	B = { <i>Months</i>
Draw a Venn diagram to	Draw a Venn
represent this information.	represent thi

Your turn $\xi = \{Months \ of \ the \ year\}$ $A = \{Months \ starting \ with \ A\}$ $B = \{Months \ with \ six \ letters\}$ Draw a Venn diagram to represent this information.

Worked example	Your turn
Represent as a Venn diagram: $\xi =$ Positive integers between 1 and 10 inclusive $A = \{$ Multiples of 2 $\}$ $B = \{$ Multiples of 4 $\}$	Represent as a Venn diagram: $\xi = Positive integers between 10$ and 20 inclusive $A = \{Multiples of 3\}$ $B = \{Multiples of 6\}$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Worked example	Your turn
 In a group of 28 scientists: 20 have degrees in Physics. 18 have degrees in Chemistry. Some have degrees in both 4 scientists have degrees which are neither Physics nor Chemistry. 	 In a group of 30 mathematicians: 15 have studied Calculus. 22 have studied Topology. Some have studied both. 3 mathematicians have not yet studied either Calculus or topology
Find the number of scientists who have degrees in both Physics and Chemistry.	Find the number of mathematicians who have studied both Calculus and Topology. 10