2.1) Set notation

A card is selected at random from a pack of 52 playing cards.
Let R be the event that the card is a royal (king, queen or jack).
Let S be the event that the card is a spade. Find:
a) $P(R \cap S)$
b) $P(R \cup S)$
c) $P\left(R^{\prime}\right)$
d) $P\left(R^{\prime} \cap S\right)$

A card is selected at random from a pack of 52 playing cards.
Let A be the event that the card is an ace.
Let D be the event that the card is a diamond. Find:
a) $P(A \cap D)$
b) $P(A \cup D)$
c) $P\left(A^{\prime}\right)$
d) $P\left(A^{\prime} \cap D\right)$
a) $\frac{1}{52}$
b) $\frac{16}{52}$
c) $\frac{48}{52}$
d) $\frac{12}{52}$

Your turn

Given that:

$$
\begin{gathered}
P(A)=0.5 \\
P(B)=0.2 \\
P(A \cap B)=0.1
\end{gathered}
$$

Explain why events A and B are independent
Given that:

$$
\begin{gathered}
P(A)=0.3 \\
P(B)=0.4 \\
P(A \cap B)=0.25
\end{gathered}
$$

Explain why events A and B are not independent.
If independent $P(A) \times P(B)=P(A \cap B)$

$$
0.3 \times 0.4=0.12 \neq 0.25
$$

$\therefore A$ and B are not independent.

Given that:

$$
\begin{gathered}
P(A)=0.5 \\
P(B)=0.34 \\
P(A \cap B)=0.25 \\
P(C)=0.15
\end{gathered}
$$

A and C are mutually exclusive. Events B and C are independent.
a) Draw a Venn diagram to illustrate the events
A, B and C, showing the probabilities for each region.
b) Find $P\left(\left(C \cap B^{\prime}\right) \cup A\right)$

Given that:

$$
\begin{gathered}
P(A)=0.3 \\
P(B)=0.4 \\
P(A \cap B)=0.25 \\
P(C)=0.2
\end{gathered}
$$

A and C are mutually exclusive.
Events B and C are independent.
a) Draw a Venn diagram to illustrate the events
A, B and C, showing the probabilities for each region.
b) Find $P\left(\left(A \cap B^{\prime}\right) \cup C\right)$
a)

b) 0.25

The events A and B are independent. Find the value of p.

The events A and B are independent. Find the value of p.

$$
p=0.15
$$

Your turn

Events A and B are independent.

$$
\begin{aligned}
& P(A)=x \\
& P(B)=y
\end{aligned}
$$

Find:
a) $P(A \cup B)$
b) $P\left(A^{\prime} \cup B\right)$

Events A and B are independent.

$$
\begin{aligned}
& P(A)=x \\
& P(B)=y
\end{aligned}
$$

Find:
a) $P(A \cap B)$
b) $P\left(A \cup B^{\prime}\right)$
a) $x y$
b) $1-y+x y$

$\xi=$ the whole sample space (1 to
6)
$A=$ even number on a die thrown
$B=$ square number on a die thrown
State what it means in this context, and the resulting set of outcomes:
A^{\prime}

$\xi=$ the whole sample space (1 to 6)
$A=$ even number on a die thrown
$B=$ prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:

$$
A^{\prime}
$$

Not A (the complement of A)
Not rolling an even number
$\{1,3,5\}$

$\xi=$ the whole sample space (1 to
6)
$A=$ even number on a die thrown
$B=$ square number on a die thrown
State what it means in this context, and the resulting set of outcomes:
B^{\prime}

$\xi=$ the whole sample space (1 to 6)
$A=$ even number on a die thrown
$B=$ prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:
B^{\prime}
Not B (the complement of B)
Not rolling a prime number
$\{1,4,6\}$

$\xi=$ the whole sample space (1 to
6)
$A=$ even number on a die thrown
$B=$ square number on a die thrown
State what it means in this context, and the resulting set of outcomes:
$A \cup B$

$\xi=$ the whole sample space (1 to 6)
$A=$ even number on a die thrown
$B=$ prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:
$A \cup B$
A or B (the union of A and B)
Rolling an even number or a prime number $\{2,3,4,5,6\}$

$\xi=$ the whole sample space (1 to
6)
$A=$ even number on a die thrown
$B=$ square number on a die thrown
State what it means in this context, and the resulting set of outcomes:
$A \cap B$

$\xi=$ the whole sample space (1 to 6)
$A=$ even number on a die thrown
$B=$ prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:
$A \cap B$
A and B (the intersection of A and B)
Rolling a number which is even and prime \{2\}

$\xi=$ the whole sample space (1 to
6)
$A=$ even number on a die thrown
$B=$ square number on a die thrown
State what it means in this context, and the resulting set of outcomes:
$A \cap B^{\prime}$

$\xi=$ the whole sample space (1 to 6)
$A=$ even number on a die thrown
$B=$ prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:
$A \cap B^{\prime}$
A and not B
Rolling a number which is even and not prime $\{4,6\}$

$\xi=$ the whole sample space (1 to
6)
$A=$ even number on a die thrown
$B=$ square number on a die thrown
State what it means in this context, and the resulting set of outcomes:
$A^{\prime} \cap B$

$\xi=$ the whole sample space (1 to 6)
$A=$ even number on a die thrown
$B=$ prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:
$A^{\prime} \cap B$
B and not A
Rolling a number which is prime and not even $\{3,5\}$

$\xi=$ the whole sample space (1 to
6)
$A=$ even number on a die thrown
$B=$ square number on a die thrown
State what it means in this context, and the resulting set of outcomes:
$(A \cup B)^{\prime}$

$\xi=$ the whole sample space (1 to 6)
$A=$ even number on a die thrown
$B=$ prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:
$(A \cup B)^{\prime}$
Not (A or B)
Rolling a number which is not (even or prime) \{1\}

$\xi=$ the whole sample space (1 to
6)
$A=$ even number on a die thrown
$B=$ square number on a die thrown
State what it means in this context, and the resulting set of outcomes:
$(A \cap B)^{\prime}$

$\xi=$ the whole sample space (1 to 6)
$A=$ even number on a die thrown
$B=$ prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:
$(A \cap B)^{\prime}$
Not (A and B)
Rolling a number which is not (even and prime) \{1\}

Your turn

Describe the area indicated using set notation:

ξ

Describe the area indicated using set notation:

ξ

Your turn

Describe the area indicated using set notation:

ξ

Describe the area indicated using set notation:
ξ

$A \cup B$

Your turn

Describe the area indicated using set notation:

Describe the area indicated using set notation:

Your turn

Describe the area indicated using set notation:

ξ

Describe the area indicated using set notation:

Your turn

Describe the area indicated using set notation:

ξ

Describe the area indicated using set notation:

$A \cap B \cap C^{\prime}$

Your turn

Describe the area indicated using set notation:

Describe the area indicated using set notation:

$$
A^{\prime} \cap B^{\prime} \cap C^{\prime} \text { or }(A \cup B \cup C)^{\prime}
$$

Your turn

Describe the area indicated using set notation:

Describe the area indicated using set notation:

A^{\prime}

Your turn

Describe the area indicated using set notation:

Describe the area indicated using set notation:

$A \cap(B \cap C)^{\prime}$

Your turn

Describe the area indicated using set notation:

Describe the area indicated using set notation:

$A \cap B^{\prime} \cap C^{\prime}$
$\xi=\{$ Days of the week $\}$
$A=\{$ Tuesday,Thursday $\}$
$B=\{$ Days starting with S or $T\}$
Draw a Venn diagram to represent this information.

$\xi=\{$ Months of the year $\}$
$A=\{$ Months starting with $A\}$
$B=\{$ Months with six letters $\}$
Draw a Venn diagram to represent this information.

Your turn

On the Venn diagram, shade the region representing:
$C \cap D$

On the Venn diagram, shade the region representing:
$A \cap B$

On the Venn diagram, shade the region representing:
$C \cup D$

On the Venn diagram, shade the region representing:
$A \cup B$

On the Venn diagram, shade the region representing:
D^{\prime}

On the Venn diagram, shade the region representing:
A^{\prime}

Your turn

On the Venn diagram, shade the region representing:
$C \cap D^{\prime}$

On the Venn diagram, shade the region representing:

$$
A^{\prime} \cap B
$$

On the Venn diagram, shade the region representing:
$(C \cup D)^{\prime}$ or $C^{\prime} \cap D^{\prime}$

On the Venn diagram, shade the region representing:
$(A \cup B)^{\prime}$ or $A^{\prime} \cap B^{\prime}$

On the Venn diagram, shade the region representing:
$D \cap E \cap F$

On the Venn diagram, shade the region representing:

$A \cap B \cap C$

On the Venn diagram, shade the region representing:
$D \cup E \cup F$

On the Venn diagram, shade the region representing:

$$
A \cup B \cup C
$$

Your turn

On the Venn diagram, shade the region representing:

$$
D \cap E^{\prime} \cap F
$$

On the Venn diagram, shade the region representing:

$A^{\prime} \cap B \cap C$

On the Venn diagram, shade the region representing:
$(D \cup E \cup F)^{\prime}$

On the Venn diagram, shade the region representing:
$(A \cup B \cup C)^{\prime}$

On the Venn diagram, shade the region representing:

$$
(D \cup E) \cap F^{\prime}
$$

On the Venn diagram, shade the region representing:
$(A \cup B) \cap C^{\prime}$

On the Venn diagram, shade the region representing:
$(D \cap F) \cup\left(E \cap F^{\prime}\right)$

On the Venn diagram, shade the region representing:
$(B \cap C) \cup\left(A^{\prime} \cap C\right)$

On the Venn diagram, shade the region representing:
$\left(D^{\prime} \cup F\right) \cap\left(D \cup E^{\prime}\right)$
$\left(A^{\prime} \cup B\right) \cap\left(B^{\prime} \cup C\right)$

On the Venn diagram, shade the region representing:
$\left(A^{\prime} \cup B\right) \cap\left(B^{\prime} \cup C\right)$

Represent as a Venn diagram: $\xi=$ Positive integers between 1 and 10 inclusive
A $=\{$ Multiples of 2$\}$
$B=\{$ Multiples of 4$\}$

Represent as a Venn diagram: $\xi=$ Positive integers between 10 and 20 inclusive
A $=\{$ Multiples of 3$\}$
$B=\{$ Multiples of 6$\}$

In a group of 28 scientists:

- 20 have degrees in Physics.
- 18 have degrees in Chemistry.
- Some have degrees in both
- 4 scientists have degrees which are neither Physics nor Chemistry.

Find the number of scientists who have degrees in both Physics and Chemistry.

In a group of 30 mathematicians:

- 15 have studied Calculus.
- 22 have studied Topology.
- Some have studied both.
- 3 mathematicians have not yet studied either Calculus or topology

Find the number of
mathematicians who have studied both Calculus and Topology.

