2A Work Done

Work Done:

Work Done Against Gravity:

1. A box is pulled 7 m across a horizontal floor by a horizontal force of magnitude 15 N . Calculate the work done by the force

2. A packing case is pulled across a horizontal floor by a horizontal rope. The case moves at a constant speed and there is a constant resistance to motion of magnitude R Newtons. When the case has moved a distance of 12 m the work done is 96 J . Calculate the magnitude of the resistance
3. A bricklayer raises a load of bricks of total mass 30 kg at a constant speed by attaching a cable to the bricks.

Assuming the cable is vertical, calculate the work done when the bricks are raised a distance of 7 m
4. A package of mass 2 kg is pulled at a constant speed up a rough plane which is inclined at an angle of 30° to the horizontal. The coefficient of friction between the package and the surface is 0.35 . The package is pulled 12 m up a line of greatest slope of the plane.

Calculate:
a) The work done against gravity
b) The work done against friction
5. A sledge is pulled 15 m across a smooth sheet of ice by a force of magnitude 27 N . The force is inclined at 25° to the horizontal. By modelling the sledge as a particle, calculate the work done by the force.

2B Kinetic \& Potential Energy

Kinetic Energy:
(Gravitational) Potential Energy

1. A particle of mass 0.3 kg is moving at a speed of $9 \mathrm{~ms}^{-1}$. Calculate its kinetic energy.
2. A box of mass 1.5 kg is pulled across a smooth horizontal surface by a horizontal force. The initial speed of the box is ums^{-1} and its final speed is $3 \mathrm{~ms}^{-1}$ in the same direction. The work done by the force is 1.8 J . Calculate the value of u.
3. A bus of mass 2000kg starts from rest at some traffic lights. After travelling 400 m the bus's speed is $12 \mathrm{~ms}^{-1}$. A constant resistance of 500 N acts on the bus. Calculate the driving force, P , which can be assumed to be constant.
4. A load of bricks of mass 30 kg is lowered vertically to the ground through a distance of 15 m . Find the loss in potential energy.

2C Work-Energy Principle

1. A smooth plane is inclined at 30° to the horizontal. A particle of mass 0.5 kg slides down the slope. The particle starts from rest at point A and at point B has a speed of $6 \mathrm{~ms}^{-1}$. Find the distance $A B$.
2. A particle of mass 2 kg is projected with speed $8 \mathrm{~ms}^{-1}$ up a rough plane inclined at 45° to the horizontal. The coefficient of friction between the particle and the plane is 0.4 . Calculate the distance the particle travels up the plane before it comes to instantaneous rest.
3. A skier passes a point A on a ski-run, moving downhill at $6 \mathrm{~ms}^{-1}$. After descending 50 m vertically, the run starts to ascend. When the skier has ascended 25 m to point B her speed is $4 \mathrm{~ms}^{-1}$. The skier and skis have a combined mass of 55 kg . The total distance travelled from A to B is 1400 m . The resistances to motion are constant and have a magnitude of 12 N .
Calculate the work done by the skier.

2D Power

Power:

A key Point: the ' F ' in formulae
Work Done ' F ' = Total resultant force
Power ' F ' = a single force (from a motor for example)

1. A truck is being pulled up a slope at a constant speed of $8 \mathrm{~ms}^{-1}$ by a force of magnitude 2000 N acting parallel to the direction of motion of the truck. Calculate the power developed in kilowatts.
2. A car of mass 1250 kg is travelling along a horizontal road. The car's engine is working at 24 kW . The resistance to motion is constant and has magnitude 600N. Calculate:
a) The acceleration of the car when it is travelling at $6 \mathrm{~ms}^{-1}$
b) The maximum speed of the car
3. A car of mass 1100 kg is travelling at a constant speed of $15 \mathrm{~ms}^{-1}$ along a straight road which is inclined at 7° to the horizontal. The engine is working at a rate of 24 kW .
a) Calculate the magnitude of the non-gravitational resistances to motion

The rate of working of the engine is now increased to 28 kW . Assuming the resistances to motion are unchanged:
b) Calculate the initial acceleration of the car

