2) Work, energy and power

2.1) Work done
2.2) Kinetic and potential energy
2.3) Conservation of mechanical energy and the work-energy principle
2.4) Power
2.1) Work done

A horizontal force of 16 N moves a box 2.5 m across a horizontal floor. Calculate the work done by the force.

A horizontal force of 8 N moves a box 5 m across a horizontal floor. Calculate the work done by the force.

Your turn

An object is pulled across a horizontal floor by a horizontal rope. The object moves at a constant speed and there is a constant resistance to motion. When the case has moved a distance of 24 m the work done is 96 J . Calculate the magnitude of the resistance.

An object is pulled across a horizontal floor by a horizontal rope. The object moves at a constant speed and there is a constant resistance to motion. When the case has moved a distance of 12 m the work done is 96 J . Calculate the magnitude of the resistance.

Your turn

An object of mass 15 kg is raised vertically at a constant speed by means of a vertical cable. Calculate the work done when the object is raised a distance of 14 m .

An object of mass 30 kg is raised vertically at a constant speed by means of a vertical cable. Calculate the work done when the object is raised a distance of 7 m .

2100 J (2 sf)

Your turn

A package of mass 4 kg is pulled at a constant speed up a rough plane which is inclined at 60° to the horizontal. The coefficient of friction between the package and the surface is 0.7 . The package is pulled 24 m up a line of greatest slope of the plane. Calculate:
a) The work done against gravity
b) The work done against friction
c) The total work done by the pulling force.

A package of mass 2 kg is pulled at a constant speed up a rough plane which is inclined at 30° to the horizontal. The coefficient of friction between the package and the surface is 0.35 . The package is pulled 12 m up a line of greatest slope of the plane. Calculate:
a) The work done against gravity
b) The work done against friction
c) The total work done by the pulling force.
a) 118 J (3 sf)
b) 71.3 J (3 sf)
c) 189 J (3 sf)

Your turn

An object is pulled 30 m across a smooth horizontal plane by a force of magnitude 54 N . The force is inclined at 50° to the horizontal.
By modelling the object as a particle calculate the work done by the force.

An object is pulled 15 m across a smooth horizontal plane by a force of magnitude 27 N . The force is inclined at 25° to the horizontal.
By modelling the object as a particle calculate the work done by the force.

367 J (3 sf)

Your turn

A particle of mass 0.9 tonnes is moving at a speed of $3 \mathrm{~ms}^{-1}$. Calculate its kinetic energy.

A particle of mass 0.3 kg is moving at a speed of $9 \mathrm{~ms}^{-1}$. Calculate its kinetic energy.
12.2 J (3 sf)

Your turn

A particle of mass $400 g$ is moving at a velocity of $(3 \boldsymbol{i}-4 \boldsymbol{j}) m s^{-1}$. Calculate its kinetic energy.

A particle of mass 0.02 tonnes is moving at a velocity of $(-5 \boldsymbol{i}+12 \boldsymbol{j}) \mathrm{ms}^{-1}$.
Calculate its kinetic energy.
1690 J

A box of mass 3 kg is pulled across a smooth horizontal surface by a horizontal force. The initial speed of the box is $u \mathrm{~ms}^{-1}$ and its final speed is $6 \mathrm{~ms}^{-1}$.
The work done by the force is 3.6 J . Calculate the value of u.

A box of mass 1.5 kg is pulled across a smooth horizontal surface by a horizontal force.
The initial speed of the box is $u \mathrm{~ms}^{-1}$ and its final speed is $3 \mathrm{~ms}^{-1}$.
The work done by the force is 1.8 J . Calculate the value of u.

$$
u=2.57(3 \mathrm{sf})
$$

A car of mass 1000 kg starts from rest at some traffic lights.
After travelling 200 m the van's speed is $6 \mathrm{~ms}^{-1}$.
A constant resistance of 250 N acts on the van.
Calculate the driving force, which can be assumed to be constant.

A van of mass 2000 kg starts from rest at some traffic lights.
After travelling $400 m$ the van's speed is $12 \mathrm{~ms}^{-1}$.
A constant resistance of 500 N acts on the van.
Calculate the driving force, which can be assumed to be constant.

Your turn

An object of mass 10 kg is lowered vertically to the ground through a distance of 45 m . Find the loss in potential energy.

An object of mass 30 kg is lowered vertically to the ground through a distance of 15 m . Find the loss in potential energy.

4410 J

A parcel of mass 6 kg is pulled 20 m up a plane inclined at an angle θ° to the horizontal, where $\tan \theta=\frac{5}{12}$. Assuming that the parcel moves up the line of greatest slope of the plane,
(a) Calculate the potential energy gained by the parcel.
(b) Find the speed of the parcel if the gain in gravitational potential energy was all transferred into kinetic energy.

A parcel of mass 3 kg is pulled 10 m up a plane inclined at an angle θ° to the horizontal, where $\tan \theta=\frac{3}{4}$.
Assuming that the parcel moves up the line of greatest slope of the plane,
(a) Calculate the potential energy gained by the parcel.
(b) Find the speed of the parcel if the gain in gravitational potential energy was all transferred into kinetic energy.
a) 176 J (3 sf)
b) $10.8 \mathrm{~ms}^{-1}(3 \mathrm{sf})$

Your turn

An object P is modelled as a particle of mass 0.3 kg . P slides down a rough plane from a point S to a point T where $S T=6 \mathrm{~m}$. The plane is inclined at an angle of 30° to the horizontal and $S T$ is a line of greatest slope of the plane. The speed of P at S and T is $5 \mathrm{~ms}^{-1}$ and $4.5 \mathrm{~ms}^{-1}$ respectively.
a) Calculate the total loss of energy of P in moving from S to T .
b) Given that the work done against friction by P is equal to the total loss of energy of P in moving from S to T, calculate the coefficient of friction between P and the plane.

An object P is modelled as a particle of mass 0.6 kg . P slides down a rough plane from a point S to a point T where $\mathrm{ST}=12 \mathrm{~m}$. The plane is inclined at an angle of 30° to the horizontal and ST is a line of greatest slope of the plane. The speed of P at S and T is
$10 \mathrm{~ms}^{-1}$ and $9 \mathrm{~ms}^{-1}$ respectively.
a) Calculate the total loss of energy of P in moving from S to T .
b) Given that the work done against friction by P is equal to the total loss of energy of P in moving from S to T, calculate the coefficient of friction between P and the plane.
a) $41.0 \mathrm{~J}(3 \mathrm{sf})$
b) $0.671(3 \mathrm{sf})$
2.3) Conservation of mechanical energy and the workenergy principle

Your turn

A smooth plane is inclined at 60° to the horizontal. A particle of mass 1 kg slides down a line of greatest slope of the plane. The particle starts from rest at point A and passes point B with a speed of $12 \mathrm{~ms}^{-1}$. Find the distance $A B$.

A smooth plane is inclined at 30° to the horizontal. A particle of mass 0.5 kg slides down a line of greatest slope of the plane. The particle starts from rest at point A and passes point B with a speed of $6 \mathrm{~ms}^{-1}$. Find the distance $A B$.

$$
3.67 \text { m (3 sf) }
$$

A particle of mass 4 kg is projected with speed $16 \mathrm{~ms}^{-1}$ up the line of greatest slope of a rough plane inclined at 30° to the horizontal. The coefficient of friction between the particle and the plane is o.8. Calculate the distance the particle travels up the plane before coming to instantaneous rest.

A particle of mass 2 kg is projected with speed $8 \mathrm{~ms}^{-1}$ up the line of greatest slope of a rough plane inclined at 45° to the horizontal. The coefficient of friction between the particle and the plane is 0.4 . Calculate the distance the particle travels up the plane before coming to instantaneous rest.
3.30 m (3 sf)

Your turn

A skier is moving downhill and passes point A on a ski run at $12 \mathrm{~ms}^{-1}$. After descending 100 m vertically the run begins to ascend. When the skier has ascended 50 m to the point B her speed is $8 \mathrm{~ms}^{-1}$. The skier and her skis have a combined mass of 55 kg . The total distance she travels from A to B is 2800 m . The non-gravitational resistances to motion are constant and have a total magnitude of 24 N. Calculate the work done by the skier.

A skier is moving downhill and passes point A on a ski run at $6 \mathrm{~ms}^{-1}$. After descending 50 m vertically the run begins to ascend. When the skier has ascended 25 m to the point B her speed is $4 \mathrm{~ms}^{-1}$. The skier and her skis have a combined mass of 55 kg . The total distance she travels from A to B is 1400 m . The nongravitational resistances to motion are constant and have a total magnitude of 12 N . Calculate the work done by the skier.

Worked example

Your turn

Two particles, A and B, of mass m and $4 m$ respectively, are attached to the ends of a light inextensible string. The particle A lies on a rough plane inclined at an angle α to the horizontal, where $\tan \alpha=\frac{5}{12}$. The string passes over a small light smooth pulley P fixed at the top of the plane. The particle B hangs freely below P. The particles are released from rest with the string taut and the section of the strig from A to P parallel to a line of greatest slope of the plane. The coefficient of friction between A and the plane is $\frac{3}{8}$. When each particle has moved a distance h, B has not reached the ground and A has not reached P.
a) Find an expression for the potential energy lost by the system when each particle has moved a distance h
b) When each particle has moved a distance h, they are moving with speed v. Using the work-energy principle, find an expression for v^{2} in the form kgh where k is a number.

Two particles, A and B, of mass m and $2 m$ respectively, are attached to the ends of a light inextensible string. The particle A lies on a rough plane inclined at an angle α to the horizontal, where $\tan \alpha=\frac{3}{4}$. The string passes over a small light smooth pulley P fixed at the top of the plane. The particle B hangs freely below P. The particles are released from rest with the string taut and the section of the strig from A to P parallel to a line of greatest slope of the plane. The coefficient of friction between A and the plane is $\frac{5}{8}$. When each particle has moved a distance $h, \mathrm{~B}$ has not reached the ground and A has not reached P.
a) Find an expression for the potential energy lost by the system when each particle has moved a distance h
b) When each particle has moved a distance h, they are moving with speed v. Using the work-energy principle, find an expression for v^{2} in the form kgh where k is a number.
a) $\frac{7 m g h}{5}$
b) $v^{2}=\frac{3}{5} g h$

A van of mass 2500 kg is travelling along a horizontal road. The van's engine is working at 48 kW . The constant resistance to motion has a magnitude of 1200 N . Calculate :
a) the acceleration of the van when it is travelling at $12 \mathrm{~ms}^{-1}$
b) the maximum speed of the van.

A van of mass 1250 kg is travelling along a horizontal road. The van's engine is working at 24 kW . The constant resistance to motion has a magnitude of 600 N . Calculate :
a) the acceleration of the van when it is travelling at $6 \mathrm{~ms}^{-1}$
b) the maximum speed of the van.
a) $2.72 \mathrm{~ms}^{-2}(3 \mathrm{sf})$
b) $40 \mathrm{~ms}^{-1}$

Your turn

A van of mass 2200 kg is travelling at a constant speed of $30 \mathrm{~ms}^{-1}$ along a straight road inclined at 14° to the horizontal. The engine is working a rate of 48 kW .
a) Calculate the magnitude of the nongravitational resistance to motion. The rate of working of the engine is now increased to 56 kW . Assuming the resistances to motion are unchanged,
b) Calculate the initial acceleration of the van.

A car of mass 1100 kg is travelling at a constant speed of $15 \mathrm{~ms}^{-1}$ along a straight road inclined at 7° to the horizontal.
The engine is working a rate of 24 kW .
a) Calculate the magnitude of the nongravitational resistance to motion.
The rate of working of the engine is now increased to 28 kW . Assuming the resistances to motion are unchanged,
b) Calculate the initial acceleration of the car.
a) $286 \mathrm{~N}(3 \mathrm{sf})$
b) $0.242 \mathrm{~ms}^{-2}(3 \mathrm{sf})$

Worked example

Your turn

A car of mass 1300 kg is travelling in a straight A van of mass 2600 kg is travelling in a line. At the instant when the speed of the van is $v \mathrm{~ms}^{-1}$, the total resistances to motion are modelled as a variable force of magnitude $\left(400+2.5 v^{2}\right) N$
The car has a cruise control feature which adjusts the power generated by the engine to maintain a constant speed of $9 \mathrm{~ms}^{-1}$. Find the power generated by the engine when the car is travelling on a horizontal road.
straight line. At the instant when the speed of the van is $v \mathrm{~ms}^{-1}$, the total resistances to motion are modelled as a variable force of magnitude $\left(800+5 v^{2}\right) N$.
The van has a cruise control feature which adjusts the power generated by the engine to maintain a constant speed of $18 \mathrm{~ms}^{-1}$. Find the power generated by the engine when the van is travelling on a horizontal road.

Worked example

Your turn

A car of mass 1300 kg is travelling in a straight line. At the instant when the speed of the van is $v \mathrm{~ms}^{-1}$, the total resistances to motion are modelled as a variable force of magnitude $\left(400+2.5 v^{2}\right) N$
The car has a cruise control feature which adjusts the power generated by the engine to maintain a constant speed of $9 \mathrm{~ms}^{-1}$.
Find the power generated by the engine when the car is travelling up a road that is inclined at 2° to the horizontal.

A van of mass 2600 kg is travelling in a straight line. At the instant when the speed of the van is $v \mathrm{~ms}^{-1}$, the total resistances to motion are modelled as a variable force of magnitude $\left(800+5 v^{2}\right) N$.
The van has a cruise control feature which adjusts the power generated by the engine to maintain a constant speed of $18 \mathrm{~ms}^{-1}$. Find the power generated by the engine when the van is travelling up a road that is inclined at 4° to the horizontal.

75600 W (3 sf)

Your turn

A child and his bicycle have a combined mass of 32 kg . He cycles up a straight stretch of road inclined at an angle α to the horizontal, where $\sin \alpha=\frac{1}{7}$.
He cycles at a constant speed of $2.5 \mathrm{~ms}^{-1}$. When he is cycling at this speed, the resistance to motion from non-gravitational forces has magnitude 10 N .
Find the rate at which the cyclist is working.

A girl and her bicycle have a combined mass of 64 kg .
She cycles up a straight stretch of road inclined at an angle α to the horizontal, where $\sin \alpha=\frac{1}{14}$.
She cycles at a constant speed of $5 \mathrm{~ms}^{-1}$.
When she is cycling at this speed, the resistance to motion from non-gravitational forces has magnitude 20 N .
Find the rate at which the cyclist is working.

