2) Conditional probability

2.1) Set notation
2.2) Conditional probability
2.3) Conditional probabilities in Venn diagrams
2.4) Probability formulae
2.5) Tree diagrams

A card is selected at random from a pack of 52 playing cards.
Let R be the event that the card is a royal (king, queen or jack).
Let S be the event that the card is a spade. Find:
a) $P(R \cap S)$
b) $P(R \cup S)$
c) $P\left(R^{\prime}\right)$
d) $P\left(R^{\prime} \cap S\right)$

A card is selected at random from a pack of 52 playing cards.
Let A be the event that the card is an ace.
Let D be the event that the card is a diamond. Find:
a) $P(A \cap D)$
b) $P(A \cup D)$
c) $P\left(A^{\prime}\right)$
d) $P\left(A^{\prime} \cap D\right)$
a) $\frac{1}{52}$
b) $\frac{16}{52}$
c) $\frac{48}{52}$
d) $\frac{12}{52}$

Your turn

Given that:

$$
\begin{gathered}
P(A)=0.5 \\
P(B)=0.2 \\
P(A \cap B)=0.1
\end{gathered}
$$

Explain why events A and B are independent
Given that:

$$
\begin{gathered}
P(A)=0.3 \\
P(B)=0.4 \\
P(A \cap B)=0.25
\end{gathered}
$$

Explain why events A and B are not independent.
If independent $P(A) \times P(B)=P(A \cap B)$

$$
0.3 \times 0.4=0.12 \neq 0.25
$$

$\therefore A$ and B are not independent.

Given that:

$$
\begin{gathered}
P(A)=0.5 \\
P(B)=0.34 \\
P(A \cap B)=0.25 \\
P(C)=0.15
\end{gathered}
$$

A and C are mutually exclusive. Events B and C are independent.
a) Draw a Venn diagram to illustrate the events
A, B and C, showing the probabilities for each region.
b) Find $P\left(\left(C \cap B^{\prime}\right) \cup A\right)$

Given that:

$$
\begin{gathered}
P(A)=0.3 \\
P(B)=0.4 \\
P(A \cap B)=0.25 \\
P(C)=0.2
\end{gathered}
$$

A and C are mutually exclusive.
Events B and C are independent.
a) Draw a Venn diagram to illustrate the events
A, B and C, showing the probabilities for each region.
b) Find $P\left(\left(A \cap B^{\prime}\right) \cup C\right)$
a)

b) 0.25

The events A and B are independent. Find the value of p.

The events A and B are independent. Find the value of p.

$$
p=0.15
$$

Your turn

Events A and B are independent.

$$
\begin{aligned}
& P(A)=x \\
& P(B)=y
\end{aligned}
$$

Find:
a) $P(A \cup B)$
b) $P\left(A^{\prime} \cup B\right)$

Events A and B are independent.

$$
\begin{aligned}
& P(A)=x \\
& P(B)=y
\end{aligned}
$$

Find:
a) $P(A \cap B)$
b) $P\left(A \cup B^{\prime}\right)$
a) $x y$
b) $1-y+x y$

$\xi=$ the whole sample space (1 to
6)
$A=$ even number on a die thrown
$B=$ square number on a die thrown
State what it means in this context, and the resulting set of outcomes:
A^{\prime}

$\xi=$ the whole sample space (1 to 6)
$A=$ even number on a die thrown
$B=$ prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:

$$
A^{\prime}
$$

Not A (the complement of A)
Not rolling an even number
$\{1,3,5\}$

$\xi=$ the whole sample space (1 to
6)
$A=$ even number on a die thrown
$B=$ square number on a die thrown
State what it means in this context, and the resulting set of outcomes:
B^{\prime}

$\xi=$ the whole sample space (1 to 6)
$A=$ even number on a die thrown
$B=$ prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:
B^{\prime}
Not B (the complement of B)
Not rolling a prime number
$\{1,4,6\}$

$\xi=$ the whole sample space (1 to
6)
$A=$ even number on a die thrown
$B=$ square number on a die thrown
State what it means in this context, and the resulting set of outcomes:
$A \cup B$

$\xi=$ the whole sample space (1 to 6)
$A=$ even number on a die thrown
$B=$ prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:
$A \cup B$
A or B (the union of A and B)
Rolling an even number or a prime number $\{2,3,4,5,6\}$

$\xi=$ the whole sample space (1 to
6)
$A=$ even number on a die thrown
$B=$ square number on a die thrown
State what it means in this context, and the resulting set of outcomes:
$A \cap B$

$\xi=$ the whole sample space (1 to 6)
$A=$ even number on a die thrown
$B=$ prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:
$A \cap B$
A and B (the intersection of A and B)
Rolling a number which is even and prime \{2\}

$\xi=$ the whole sample space (1 to
6)
$A=$ even number on a die thrown
$B=$ square number on a die thrown
State what it means in this context, and the resulting set of outcomes:
$A \cap B^{\prime}$

$\xi=$ the whole sample space (1 to 6)
$A=$ even number on a die thrown
$B=$ prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:
$A \cap B^{\prime}$
A and not B
Rolling a number which is even and not prime $\{4,6\}$

$\xi=$ the whole sample space (1 to
6)
$A=$ even number on a die thrown
$B=$ square number on a die thrown
State what it means in this context, and the resulting set of outcomes:
$A^{\prime} \cap B$

$\xi=$ the whole sample space (1 to 6)
$A=$ even number on a die thrown
$B=$ prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:
$A^{\prime} \cap B$
B and not A
Rolling a number which is prime and not even $\{3,5\}$

$\xi=$ the whole sample space (1 to
6)
$A=$ even number on a die thrown
$B=$ square number on a die thrown
State what it means in this context, and the resulting set of outcomes:
$(A \cup B)^{\prime}$

$\xi=$ the whole sample space (1 to 6)
$A=$ even number on a die thrown
$B=$ prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:
$(A \cup B)^{\prime}$
Not (A or B)
Rolling a number which is not (even or prime) \{1\}

$\xi=$ the whole sample space (1 to
6)
$A=$ even number on a die thrown
$B=$ square number on a die thrown
State what it means in this context, and the resulting set of outcomes:
$(A \cap B)^{\prime}$

$\xi=$ the whole sample space (1 to 6)
$A=$ even number on a die thrown
$B=$ prime number on a die thrown

State what it means in this context, and the resulting set of outcomes:
$(A \cap B)^{\prime}$
Not (A and B)
Rolling a number which is not (even and prime) \{1\}

Your turn

Describe the area indicated using set notation:

ξ

Describe the area indicated using set notation:

ξ

Your turn

Describe the area indicated using set notation:

ξ

Describe the area indicated using set notation:
ξ

$A \cup B$

Your turn

Describe the area indicated using set notation:

Describe the area indicated using set notation:

Your turn

Describe the area indicated using set notation:

ξ

Describe the area indicated using set notation:

Your turn

Describe the area indicated using set notation:

ξ

Describe the area indicated using set notation:

$A \cap B \cap C^{\prime}$

Your turn

Describe the area indicated using set notation:

Describe the area indicated using set notation:

$$
A^{\prime} \cap B^{\prime} \cap C^{\prime} \text { or }(A \cup B \cup C)^{\prime}
$$

Your turn

Describe the area indicated using set notation:

Describe the area indicated using set notation:

A^{\prime}

Your turn

Describe the area indicated using set notation:

Describe the area indicated using set notation:

$A \cap(B \cap C)^{\prime}$

Your turn

Describe the area indicated using set notation:

Describe the area indicated using set notation:

$A \cap B^{\prime} \cap C^{\prime}$
$\xi=\{$ Days of the week $\}$
$A=\{$ Tuesday,Thursday $\}$
$B=\{$ Days starting with S or $T\}$
Draw a Venn diagram to represent this information.

$\xi=\{$ Months of the year $\}$
$A=\{$ Months starting with $A\}$
$B=\{$ Months with six letters $\}$
Draw a Venn diagram to represent this information.

Your turn

On the Venn diagram, shade the region representing:
$C \cap D$

On the Venn diagram, shade the region representing:
$A \cap B$

On the Venn diagram, shade the region representing:
$C \cup D$

On the Venn diagram, shade the region representing:
$A \cup B$

On the Venn diagram, shade the region representing:
D^{\prime}

On the Venn diagram, shade the region representing:
A^{\prime}

Your turn

On the Venn diagram, shade the region representing:
$C \cap D^{\prime}$

On the Venn diagram, shade the region representing:

$$
A^{\prime} \cap B
$$

On the Venn diagram, shade the region representing:
$(C \cup D)^{\prime}$ or $C^{\prime} \cap D^{\prime}$

On the Venn diagram, shade the region representing:
$(A \cup B)^{\prime}$ or $A^{\prime} \cap B^{\prime}$

On the Venn diagram, shade the region representing:
$D \cap E \cap F$

On the Venn diagram, shade the region representing:

$A \cap B \cap C$

On the Venn diagram, shade the region representing:
$D \cup E \cup F$

On the Venn diagram, shade the region representing:

$$
A \cup B \cup C
$$

Your turn

On the Venn diagram, shade the region representing:

$$
D \cap E^{\prime} \cap F
$$

On the Venn diagram, shade the region representing:

$A^{\prime} \cap B \cap C$

On the Venn diagram, shade the region representing:
$(D \cup E \cup F)^{\prime}$

On the Venn diagram, shade the region representing:
$(A \cup B \cup C)^{\prime}$

On the Venn diagram, shade the region representing:

$$
(D \cup E) \cap F^{\prime}
$$

On the Venn diagram, shade the region representing:
$(A \cup B) \cap C^{\prime}$

On the Venn diagram, shade the region representing:
$(D \cap F) \cup\left(E \cap F^{\prime}\right)$

On the Venn diagram, shade the region representing:
$(B \cap C) \cup\left(A^{\prime} \cap C\right)$

On the Venn diagram, shade the region representing:
$\left(D^{\prime} \cup F\right) \cap\left(D \cup E^{\prime}\right)$
$\left(A^{\prime} \cup B\right) \cap\left(B^{\prime} \cup C\right)$

On the Venn diagram, shade the region representing:
$\left(A^{\prime} \cup B\right) \cap\left(B^{\prime} \cup C\right)$

Represent as a Venn diagram: $\xi=$ Positive integers between 1 and 10 inclusive
A $=\{$ Multiples of 2$\}$
$B=\{$ Multiples of 4$\}$

Represent as a Venn diagram: $\xi=$ Positive integers between 10 and 20 inclusive
A $=\{$ Multiples of 3$\}$
$B=\{$ Multiples of 6$\}$

In a group of 28 scientists:

- 20 have degrees in Physics.
- 18 have degrees in Chemistry.
- Some have degrees in both
- 4 scientists have degrees which are neither Physics nor Chemistry.

Find the number of scientists who have degrees in both Physics and Chemistry.

In a group of 30 mathematicians:

- 15 have studied Calculus.
- 22 have studied Topology.
- Some have studied both.
- 3 mathematicians have not yet studied either Calculus or topology

Find the number of
mathematicians who have studied both Calculus and Topology.

2.2) Conditional probability

Your turn

A group is made up of 62 men and 48 women. 32 of the men and 46 of the women are righthanded.
a) Draw a two-way table to show this information.
b) One person is chosen at random. Find:
i) P (right-handed)
ii) P (right-handed | woman)
iii) P (man | right-handed)

A group is made up of 42 men and 68 women. 36 of the women and 24 of the men are lefthanded.
a) Draw a two-way table to show this information.
b) One person is chosen at random. Find:
i) P (left-handed)
ii) P (left-handed |man)
iii) P (woman | left-handed)
a)

	\mathbf{L}	\mathbf{L}^{\prime}
\mathbf{M}	24	18
\mathbf{W}	36	32

b)
i) $\frac{60}{110}=\frac{6}{11}$
ii) $\frac{24}{42}=\frac{4}{7}$
iii) $\frac{36}{60}=\frac{3}{5}$

Your turn

The following two-way table shows what foreign language students in Year 9 study. G is the event that the student is a girl. S is the event they chose Spanish as their language.

	\boldsymbol{G}	\boldsymbol{G}^{\prime}
\boldsymbol{S}	18	34
\boldsymbol{S}^{\prime}	16	32

Determine:
a) $P\left(S^{\prime} \mid G\right)$
b) $P\left(G^{\prime} \mid S\right)$

The following two-way table shows what foreign language students in Year 9 study.
B is the event that the student is a boy.
F is the event they chose French as their language.

	\boldsymbol{B}	\boldsymbol{B}^{\prime}
\boldsymbol{F}	14	38
\boldsymbol{F}^{\prime}	26	22

Determine:
a) $P\left(F \mid B^{\prime}\right)$
b) $P\left(B \mid F^{\prime}\right)$
a) $\frac{38}{60}$
b) $\frac{26}{48}$

2.3) Conditional probabilities in Venn diagrams

Worked example
Using the Venn diagram, determine:

a) $P(A \mid B)$
b) $P\left(A^{\prime} \mid B^{\prime}\right)$
c) $P(A \mid A \cup B)$

Your turn

Using the Venn diagram, determine:

a) $P(A \mid B)$
b) $P\left(A^{\prime} \mid B^{\prime}\right)$
c) $P(B \mid A \cup B)$
a) $\frac{1}{3}$
b) $\frac{1}{3}$
C) $\frac{1}{2}$

Your turn

Given that $P(X)=0.7$ and $P(X \cap Y)=0.2$, determine:

$$
P(Y \mid X)
$$

Given that $P(A)=0.5$ and $P(A \cap B)=0.3$, determine:

$$
P(B \mid A)
$$

0.6

Your turn

Given that $P(B)=0.7$ and $P(A \cap B)=0.2$, determine:

$$
P\left(A^{\prime} \mid B\right)
$$

Given that $P(Y)=0.6$ and $P(X \cap Y)=0.4$, determine:

$$
\begin{gathered}
P\left(X^{\prime} \mid Y\right) \\
\frac{1}{3}
\end{gathered}
$$

Your turn

Given that $P(X)=0.4, P(Y)=0.4$ and $P(X \cap Y)=0.3$, determine:
$P\left(Y \mid X^{\prime}\right)$
Given that $P(A)=0.5, P(B)=0.5$ and $P(A \cap B)=0.4$, determine:

$$
P\left(B \mid A^{\prime}\right)
$$

0.2

Your turn

Given that

$$
\begin{gathered}
P(E)=0.24 \\
P(E \cup F)=0.79 \\
P\left(E \cap F^{\prime}\right)=0.12
\end{gathered}
$$

Draw a Venn diagram to illustrate the probabilities of each region.

Given that

$$
\begin{gathered}
P(E)=0.28 \\
P(E \cup F)=0.76 \\
P\left(E \cap F^{\prime}\right)=0.11
\end{gathered}
$$

Draw a Venn diagram to illustrate the probabilities of each region.

Given that

$$
\begin{aligned}
& P\left(A \cap B^{\prime}\right)=0.3 \\
& P(A \cup B)=0.65
\end{aligned}
$$

Determine:
a) $P(B)$
b) $P\left(A^{\prime} \cap B^{\prime}\right)$

Given that

$$
\begin{aligned}
& P\left(A \cap B^{\prime}\right)=0.4 \\
& P(A \cup B)=0.75
\end{aligned}
$$

Determine:
a) $P(B)$
b) $P\left(A^{\prime} \cap B^{\prime}\right)$
a) 0.35
b) 0.25

Given that

$$
\begin{gathered}
P\left(A^{\prime}\right)=0.6 \\
P\left(B^{\prime}\right)=0.15 \\
P\left(A \cap B^{\prime}\right)=0.05
\end{gathered}
$$

Determine:
a) $P\left(A \cup B^{\prime}\right)$
b) $P\left(B \mid A^{\prime}\right)$

Given that

$$
\begin{gathered}
P\left(A^{\prime}\right)=0.7 \\
P\left(B^{\prime}\right)=0.2 \\
P\left(A \cap B^{\prime}\right)=0.1
\end{gathered}
$$

Determine:
a) $P\left(A \cup B^{\prime}\right)$
b) $P\left(B \mid A^{\prime}\right)$
a) 0.4
b) $\frac{6}{7}$

Your turn

The events A and B are independent. $P(B \mid C)=\frac{10}{11}$,
a) Find the values of p, q and r
b) Find $P(A \cup C \mid B)$

The events A and B are independent. $P(B \mid C)=\frac{5}{11}$,
a) Find the values of p, q and r
b) Find $P(A \cup C \mid B)$

a) $p=0.15, q=0.24, r=0.21$
b) 0.75
2.4) Probability formulae

Two events A and B are independent.

$$
\begin{aligned}
& P(A)=\frac{1}{5} \\
& P(B)=\frac{1}{6}
\end{aligned}
$$

Find:
a) $P(A \cap B)$
b) $P(B \mid A)$
c) $P(A \cup B)$

Two events A and B are independent.

$$
\begin{aligned}
& P(A)=\frac{1}{3} \\
& P(B)=\frac{1}{4}
\end{aligned}
$$

Find:
a) $P(A \cap B)$
b) $P(A \mid B)$
c) $P(A \cup B)$
a) $\frac{1}{12}$
b) $\frac{1}{3}$
c) $\frac{1}{2}$
A and B are two events such that

$$
\begin{gathered}
P(A)=0.3 \\
P(B)=0.4 \\
P(A \mid B)=0.2
\end{gathered}
$$

Find:
a) $P(A \cap B)$
b) $P(B \mid A)$
c) $P(A \cup B)$
C and D are two events such that

$$
\begin{gathered}
P(C)=0.2 \\
P(D)=0.6 \\
P(C \mid D)=0.3
\end{gathered}
$$

Find:
a) $P(C \cap D)$
b) $P(D \mid C)$
c) $P(C \cup D)$
a) 0.18
b) 0.9
c) 0.62
C and D are two independent events such that

$$
\begin{gathered}
P(C)=\frac{1}{3} \\
P(C \cup D)=\frac{3}{5}
\end{gathered}
$$

Find:
a) $P(D)$
b) $P\left(C^{\prime} \cap D\right)$
c) $P\left(D^{\prime} \mid C\right)$
A and B are two independent events such that

$$
\begin{gathered}
P(A)=\frac{1}{4} \\
P(A \cup B)=\frac{2}{3}
\end{gathered}
$$

Find:
a) $P(B)$
b) $P\left(A^{\prime} \cap B\right)$
c) $P\left(B^{\prime} \mid A\right)$
a) $\frac{5}{9}$
b) $\frac{5}{12}$
c) $\frac{4}{9}$

Your turn

There are three events: A, B and C. A and C are mutually exclusive. A and B are independent.

$$
\begin{gathered}
P(A)=0.4 \\
P(C)=0.3 \\
P(A \cup B)=0.6
\end{gathered}
$$

Find:
a) $P(A \mid B)$
b) $P(A \cup C)$
c) $P(B)$

There are three events: A, B and C.
A and B are mutually exclusive.
A and C are independent.

$$
\begin{gathered}
P(A)=0.2 \\
P(B)=0.4 \\
P(A \cup C)=0.7
\end{gathered}
$$

Find:
a) $P(A \mid C)$
b) $P(A \cup B)$
c) $P(C)$
a) 0.2
b) 0.6
c) 0.625

Your turn

Write out the law for conditional probability: "Given John runs to school, find the probability that he's not late..."

Write out the law for conditional probability:
"Given Bob walks to school, find the probability that he's not late..."

$$
P\left(L^{\prime} \mid W\right)=\frac{P\left(L^{\prime} \cap W\right)}{P(W)}=\cdots
$$

Your turn

Write out the relevant probability laws:

- C and D are independent events.
- C and D are mutually exclusive events.

Write out the law for independent events:

- A and B are independent events.

$$
\begin{aligned}
& P(A \cap B)=P(A) P(B) \\
& P(A \mid B)=P(A)
\end{aligned}
$$

- C and D are mutually exclusive events.

$$
\begin{gathered}
P(C \cap D)=0 \\
P(C \cup D)=P(C)+P(D)
\end{gathered}
$$

2.5) Tree diagrams

A bag contains 7 green beads and 3 yellow beads.
A bead is taken from the bag at random, the colour is recorded and it is not replaced. A second bead is then taken from the bag and its colour recorded.
Given that both balls are the same colour, find the probability that they are both green.

A bag contains 6 green beads and 4 yellow beads.
A bead is taken from the bag at random, the colour is recorded and it is not replaced. A second bead is then taken from the bag and its colour recorded.
Given that both balls are the same colour, find the probability that they are both yellow.

Your turn

There are two bags.
Bag A contains 5 red balls and 5 blue balls Bag B contains 3 red balls and 6 blue balls. One ball is taken from bag A and placed in bag B. Then one ball is taken from bag B. Find the probability that:
a) A blue ball is taken from bag B.
b) Given that a blue ball is taken from bag B, the ball taken from bag A was also blue.

There are two bags.
Bag A contains 5 red balls and 5 blue balls Bag B contains 3 red balls and 6 blue balls. One ball is taken from bag A and placed in bag B. Then one ball is taken from bag B.
Find the probability that:
a) A red ball is taken from bag B.
b) Given that a red ball is taken from bag B, the ball taken from bag A was also red.
a) $\frac{7}{20}$
b) $\frac{4}{7}$

On a randomly chosen day the probability that a person travels to work by bus, train or motorbike is $\frac{2}{5}, \frac{1}{4}$ and $\frac{7}{20}$ respectively. The probability of being late when using these methods of travel is $\frac{1}{3}, \frac{2}{7}$ and $\frac{3}{8}$ respectively. Given that the person is late, find the probability that they did not travel by bus.

On a randomly chosen day the probability that a person travels to school by car, bicycle or on foot is $\frac{1}{2}, \frac{1}{6}$ and $\frac{1}{3}$ respectively.
The probability of being late when using these methods of travel is $\frac{1}{5}, \frac{2}{5}$ and $\frac{1}{10}$ respectively.
Given that the person is late, find the probability that they did not travel on foot.

A bag contains 9 blue balls and 3 red balls. A ball is selected at random from the bag and its colour is recorded. The ball is not replaced. A second ball is selected at random and its colour is recorded.
Find the probability that:
a) The second ball selected is blue
b) Both balls selected are blue, given that the second ball selected is blue.

A bag contains 9 blue balls and 3 red balls. A ball is selected at random from the bag and its colour is recorded.
The ball is not replaced.
A second ball is selected at random and its colour is recorded.
Find the probability that:
a) The second ball selected is red
b) Both balls selected are red, given that the second ball selected is red.
a) $\frac{1}{4}$
b) $\frac{2}{11}$

In bag A there are 2 white and 5 red counters.
In bag B there are 7 white counters and 3 red counters.
A person takes at random one counter from A and one counter from B.
Find the probability that the counters are the same colour

In bag A there are 5 white and 2 red counters.
In bag B there are 3 white counters and 7 red counters.
A person takes at random one counter from A and one counter from B.
Find the probability that the
counters are the same colour

In bag A there are 2 white and 5 red counters.
In bag B there are 7 white counters and 3 red counters. A person takes at random one counter from A and one counter from B.
Find the probability that the counters are different colours

In bag A there are 5 white and 2 red counters.
In bag B there are 3 white counters and 7 red counters.
A person takes at random one counter from A and one counter from B.
Find the probability that the
counters are different colours
$\frac{41}{70}$

A person plays a game of tennis and then a game of golf.
They can only win or lose each game. The probability of winning tennis is 0.3 The probability of winning golf is 0.7 The results of each game are independent of each other. Calculate the probability that the person wins at least one game

A person plays a game of tennis and then a game of golf.
They can only win or lose each game.
The probability of winning tennis is 0.6
The probability of winning golf is 0.35
The results of each game are independent of each other.
Calculate the probability that the person wins at least one game

$$
\frac{37}{50}=0.74
$$

Your turn

The table shows 100 students, who each study one language. Two students are chosen at random.

	French	German
Female	26	30
Male	10	34

Calculate the probability that the two chosen students study the same language.

The table shows 50 students, who each study one language. Two students are chosen at random.

	Japanese	Spanish
Female	13	15
Male	5	17

Calculate the probability that the two chosen students study the same language.

$$
\frac{64}{245}
$$

Your turn

There are two bags with numbered discs as shown.

A person chooses a disc at random from bag 1.
If it is labelled 2 , he puts the disc in bag 2.

If it is labelled 1 , he does not put the disc in bag 2.
He then chooses a disc at random from bag 2. He then adds the numbers of the two discs he selected to give his score. Find the probability that his score is 5.

There are two bags with numbered discs as shown.

A person chooses a disc at random from bag 1.
If it is labelled 1 , he puts the disc in bag 2. If it is labelled 2 , he does not put the disc in bag 2.
He then chooses a disc at random from bag 2.
He then adds the numbers of the two discs he selected to give his score.
Find the probability that his score is 4.

