2) Quadratics

2.1) Solving quadratic equations
2.2) Completing the square
2.3) Functions
2.4) Quadratic graphs
2.5) The discriminant
2.6) Modelling with quadratics

$$
(2 x-3)^{2}=4
$$

Solve:

$$
\begin{gathered}
(3 x-5)^{2}=9 \\
x=\frac{2}{3}, x=\frac{8}{3}
\end{gathered}
$$

Your turn

Solve:

$$
x-8 \sqrt{x}+15=0
$$

Solve:

$$
\begin{gathered}
x-6 \sqrt{x}+8=0 \\
x=4, x=16
\end{gathered}
$$

Your turn

Solve:

$$
3 x+2 \sqrt{x}-8=0
$$

Solve:

$$
\begin{gathered}
2 x+\sqrt{x}-1=0 \\
x=\frac{1}{4}
\end{gathered}
$$

Solve:

$$
\sqrt{x+6}=x-6
$$

Solve:

$$
\begin{gathered}
\sqrt{x+3}=x-3 \\
x=6 \text { only }
\end{gathered}
$$

$$
(2 x-3)^{2}=4
$$

Solve:

$$
\begin{gathered}
(3 x-5)^{2}=9 \\
x=\frac{2}{3}, x=\frac{8}{3}
\end{gathered}
$$

Solve:

Solve:

$$
\begin{gathered}
3 x^{2}+49=7 x^{2}+13 \\
x= \pm 3
\end{gathered}
$$

$$
45+2 x^{2}=5 x^{2}-3
$$

$$
1-x^{2}=-6 x^{2}+6
$$

Worked example
Solve:
$2 x^{2}=18$
$(2 x)^{2}=4$

Solve:

$$
\begin{gathered}
3 x^{2}=48 \\
x= \pm 4 \\
\\
(3 x)^{2}=36 \\
x= \pm 2
\end{gathered}
$$

$$
\begin{gathered}
5 x^{2}=\frac{45}{121} \\
x= \pm \frac{3}{11}
\end{gathered}
$$

Your turn

Solve:

$$
4^{x}-12\left(2^{x}\right)+32=0
$$

Solve:

$$
\begin{gathered}
9^{x}-10\left(3^{x}\right)+9=0 \\
x=2, x=0
\end{gathered}
$$

Solve:
Solve:

$$
\begin{gathered}
x^{4}-17 x^{2}+16=0 \\
x= \pm 4, x= \pm 1
\end{gathered}
$$

Your turn

Solve:
Solve:

$$
\begin{gathered}
x^{6}-9 x^{3}+8=0 \\
x=2, x=1
\end{gathered}
$$

$$
y=\frac{1}{27}, y=-1
$$

Your turn

Solve:

$$
x+\frac{2}{x}=3
$$

$$
x-\frac{3}{x}=5
$$

$$
\begin{gathered}
x+\frac{4}{x}=5 \\
x=4, x=1
\end{gathered}
$$

Solve:

$$
\begin{aligned}
& \frac{3}{x^{2}}+\frac{2}{x}=1 \\
& \frac{2}{x^{2}}-\frac{7}{x}=3
\end{aligned}
$$

Solve:

$$
\begin{gathered}
\frac{2}{x^{2}}-\frac{5}{x}=3 \\
x=\frac{1}{3}, x=-2
\end{gathered}
$$

Your turn

Solve:
Solve:

$$
\begin{gathered}
x^{3}-3 x^{2}-10 x=0 \\
x=0, x=5, x=-2
\end{gathered}
$$

Solve by factorising:

$$
\begin{aligned}
& x^{2}+6 x+9=0 \\
& x^{2}+8 x+16=0 \\
& x^{2}+10 x+25=0 \\
& x^{2}+2 x+1=0
\end{aligned}
$$

$$
\begin{gathered}
x^{2}+12 x+36=0 \\
x=-6
\end{gathered}
$$

Solve by factorising:

$$
\begin{aligned}
& x^{2}-6 x+9=0 \\
& x^{2}-8 x+16=0 \\
& x^{2}-10 x+25=0 \\
& x^{2}-2 x+1=0
\end{aligned}
$$

Solve by factorising:

$$
\begin{gathered}
x^{2}-12 x+36=0 \\
x=6
\end{gathered}
$$

Your turn

Solve by factorising:

$$
\begin{aligned}
& x^{2}+17 x+16=0 \\
& x^{2}+10 x+16=0 \\
& x^{2}+8 x+16=0 \\
& x^{2}-8 x+16=0
\end{aligned}
$$

Solve by factorising:

$$
\begin{gathered}
x^{2}+37 x+36=0 \\
x=-36, x=-1 \\
x^{2}+20 x+36=0 \\
x=-18, x=-2 \\
x^{2}+15 x+36=0 \\
x=-12, x=-3 \\
x^{2}+13 x+36=0 \\
x=-9, x=-4 \\
x^{2}+12 x+36=0 \\
x=-6
\end{gathered}
$$

Solve by factorising:

$$
\begin{gathered}
x^{2}+10 x+9=0 \\
x^{2}+10 x+16=0 \\
x^{2}+10 x+25=0 \\
x^{2}+10 x=0
\end{gathered}
$$

Solve by factorising:

$$
\begin{gathered}
x^{2}+12 x+11=0 \\
x=-11, x=-1 \\
\\
x^{2}+12 x+27=0 \\
x=-9, x=-3
\end{gathered}
$$

$$
x^{2}+12 x+36=0
$$

$$
x=-6
$$

$$
x^{2}+12 x=0
$$

$$
x=0, x=-12
$$

Your turn

Solve by factorising:

$$
3 x^{2}+10 x+3=0
$$

$$
3 x^{2}+10 x+8=0
$$

$$
3 x^{2}+14 x+8=0
$$

Solve by factorising:

$$
\begin{gathered}
5 x^{2}+8 x+3=0 \\
x=-\frac{3}{5}, x=-1
\end{gathered}
$$

$$
5 x^{2}+16 x+12=0
$$

$$
x=-\frac{6}{5}, x=-2
$$

$$
5 x^{2}+32 x+12=0
$$

$$
x=-\frac{2}{5}, x=-6
$$

Solve by factorising:

$$
2 x^{2}+8 x+6=0
$$

$$
3 x^{2}+21 x+30=0
$$

$$
5 x^{2}+5 x-30=0
$$

Solve by factorising:

$$
\begin{gathered}
3 x^{2}+15 x-42=0 \\
x=-7, x=2
\end{gathered}
$$

Your turn

Solve by factorising: $6+5 x-x^{2}=0$

$$
3-2 x-x^{2}=0
$$

Solve by factorising:

$$
\begin{gathered}
12-x-x^{2}=0 \\
x=3, x=-4
\end{gathered}
$$

Your turn

Solve:

$$
\begin{aligned}
& 6+5 x-x^{2}=0 \\
& -6+5 x-x^{2}=0
\end{aligned}
$$

Solve:

$$
\begin{gathered}
6-5 x-x^{2}=0 \\
x=-6, x=1
\end{gathered}
$$

Solve with the quadratic formula:
$2 x^{2}+x-3=0$

Solve with the quadratic formula:

$$
\begin{gathered}
5 x^{2}+13 x-6=0 \\
x=\frac{2}{5}, x=-3
\end{gathered}
$$

Solve with the quadratic formula: $2 x^{2}+x-4=0$

Solve with the quadratic formula:

$$
\begin{gathered}
5 x^{2}+13 x-7=0 \\
x=\frac{-13+\sqrt{309}}{10}, x=\frac{-13-\sqrt{309}}{10}
\end{gathered}
$$

Solve with the quadratic formula: $x^{2}+x-11=0$
$-2 x^{2}+x+3=0$

Solve with the quadratic formula:

$$
\begin{gathered}
-x^{2}+13 x-7=0 \\
x=\frac{13+\sqrt{141}}{2}, x=\frac{13-\sqrt{141}}{2}
\end{gathered}
$$

Your turn

The solutions to a quadratic equation are $x=\frac{5 \pm \sqrt{25+24}}{6}$
What is the quadratic equation?

The solutions to a quadratic equation are $x=\frac{6 \pm \sqrt{36+8}}{2}$
What is the quadratic equation?

$$
x^{2}-6 x-2=0
$$

How many real roots are there to:
$x^{2}+6 x+8=0$

$$
x^{2}+6 x+9=0
$$

$$
x^{2}+6 x+10=0
$$

How many real roots are there to:

$$
\begin{gathered}
x^{2}+8 x+12=0 \\
\text { Two: } x=-6, x=-2 \\
x^{2}+8 x+16=0 \\
\text { One: } x=-4 \\
\\
x^{2}+8 x+17=0 \\
\text { No real roots }
\end{gathered}
$$

Your turn

Solve:

$$
x+\frac{2}{x}=3
$$

$$
x-\frac{3}{x}=5
$$

$$
\begin{gathered}
x+\frac{4}{x}=5 \\
x=4, x=1
\end{gathered}
$$

Solve:

$$
\begin{aligned}
& \frac{3}{x^{2}}+\frac{2}{x}=1 \\
& \frac{2}{x^{2}}-\frac{7}{x}=3
\end{aligned}
$$

Solve:

$$
\begin{gathered}
\frac{2}{x^{2}}-\frac{5}{x}=3 \\
x=\frac{1}{3}, x=-2
\end{gathered}
$$

Solve by completing the square:

$$
x^{2}+8 x+3=0
$$

$$
x^{2}+10 x-4=0
$$

Solve by completing the square:

$$
\begin{gathered}
x^{2}+6 x+4=0 \\
x=-3+\sqrt{5}, x=-3-\sqrt{5}
\end{gathered}
$$

Solve by completing the square:

$$
2 x^{2}-8 x+3=0
$$

$$
3 x^{2}-10 x-4=0
$$

Solve by completing the square:

$$
\begin{gathered}
5 x^{2}-6 x-2=0 \\
x=\frac{3+\sqrt{19}}{5}, x=\frac{3-\sqrt{19}}{5}
\end{gathered}
$$

Solve using three methods:
$x^{2}+6 x+8=0$

$$
x^{2}+6 x+8=0
$$

$$
x^{2}+6 x+8=0
$$

Solve using three methods:

$$
\begin{aligned}
& x^{2}+6 x+5=0 \\
& x=-5, x=-1
\end{aligned}
$$

Your turn

The area of the rectangle is equal to 32 square units. Find x

$$
x-3
$$

The area of the rectangle is equal to 28 square units. Find x

The area of the triangle is equal to 16 square units. Find x

The area of the triangle is equal to 24 square units. Find x

Your turn

Two numbers have a difference of 3 and a product of 88 . Find the two numbers.

Two numbers have a difference of 5 and a product of 14. Find the two numbers.

Two numbers have a difference of 4 and a product of 12 . Find the two numbers.

$$
\begin{gathered}
x=6, y=2 \\
x=-2, y=-6
\end{gathered}
$$

2.2) Completing the square

Worked example

Your turn

Complete the square for:

$$
x^{2}+4 x
$$

$$
x^{2}-6 x
$$

$$
x^{2}+8 x-7
$$

Complete the square for:

$$
\begin{aligned}
& x^{2}-10 x+3 \\
& (x-5)^{2}-22
\end{aligned}
$$

Worked example

Your turn

Complete the square for:

$$
x^{2}+6 x+5
$$

$$
x^{2}+8 x+3
$$

Complete the square for:

$$
\begin{aligned}
& x^{2}+10 x+1 \\
& (x+5)^{2}-24
\end{aligned}
$$

Worked example

Your turn

Complete the square for:

$$
x^{2}-6 x+5
$$

Complete the square for:

$$
\begin{aligned}
& x^{2}-10 x+1 \\
& (x-5)^{2}-24
\end{aligned}
$$

Worked example

Your turn

Complete the square for:

$$
x^{2}+9 x+5
$$

Complete the square for:

$$
\begin{gathered}
x^{2}+5 x+1 \\
\left(x+\frac{5}{2}\right)^{2}-\frac{21}{4}
\end{gathered}
$$

$$
x^{2}+7 x+3
$$

Worked example

Your turn

Complete the square for:

$$
x^{2}-5 x-3
$$

Complete the square for:

$$
\begin{gathered}
x^{2}-3 x-2 \\
\left(x-\frac{3}{2}\right)^{2}-\frac{17}{4}
\end{gathered}
$$

Complete the square for:

$$
2 x^{2}+12 x+1
$$

$$
3 x^{2}+12 x+2
$$

Complete the square for:

$$
\begin{gathered}
5 x^{2}+40 x+3 \\
5(x+4)^{2}-77
\end{gathered}
$$

Worked example

Your turn

Complete the square for:
$2 x^{2}+5 x+1$

$$
3 x^{2}+7 x+2
$$

Complete the square for:

$$
\begin{gathered}
5 x^{2}+9 x+3 \\
5\left(x+\frac{9}{10}\right)^{2}-\frac{21}{20}
\end{gathered}
$$

Worked example

Your turn

Complete the square for:
$2 x^{2}-5 x+3$

$$
5 x^{2}-3 x+1
$$

Complete the square for:

$$
\begin{gathered}
3 x^{2}-7 x+2 \\
3\left(x-\frac{7}{6}\right)^{2}-\frac{25}{12}
\end{gathered}
$$

Your turn

Express in the form $a(x+b)^{2}+c$: Express in the form $a(x+b)^{2}+c$:

$$
2 x^{2}-5 x+3
$$

$$
3 x^{2}-7 x+2
$$

$$
3\left(x-\frac{7}{6}\right)^{2}-\frac{25}{12}
$$

Complete the square for:

$$
3+5 x-x^{2}
$$

$$
2-3 x-x^{2}
$$

Complete the square for:

$$
5-7 x-x^{2}
$$

$$
-\left(x+\frac{7}{2}\right)^{2}+\frac{69}{4}
$$

Worked example

Your turn

Complete the square for:
$3+5 x-2 x^{2}$
Complete the square for:

$$
\begin{gathered}
5-7 x-3 x^{2} \\
-3\left(x+\frac{7}{6}\right)^{2}+\frac{109}{12}
\end{gathered}
$$

$$
2-3 x-5 x^{2}
$$

Solve by completing the square:

$$
x^{2}+8 x+3=0
$$

$$
x^{2}+10 x-4=0
$$

Solve by completing the square:

$$
\begin{gathered}
x^{2}+6 x+4=0 \\
x=-3+\sqrt{5}, x=-3-\sqrt{5}
\end{gathered}
$$

Solve by completing the square:

$$
2 x^{2}-8 x+3=0
$$

$$
3 x^{2}-10 x-4=0
$$

Solve by completing the square:

$$
\begin{gathered}
5 x^{2}-6 x-2=0 \\
x=\frac{3+\sqrt{19}}{5}, x=\frac{3-\sqrt{19}}{5}
\end{gathered}
$$

Solve using three methods:
$x^{2}+6 x+8=0$

$$
x^{2}+6 x+8=0
$$

$$
x^{2}+6 x+8=0
$$

Solve using three methods:

$$
\begin{aligned}
& x^{2}+6 x+5=0 \\
& x=-5, x=-1
\end{aligned}
$$

Your turn

By completing the square, explain why the curve $y=2 x^{2}-8 x+9$ does not intersect the x-axis

By completing the square, explain why the curve $y=2 x^{2}-20 x+$ 51 does not intersect the x-axis

$$
\begin{gathered}
y=2(x-5)^{2}+1 \\
\text { Turning point at }(5,1)
\end{gathered}
$$

A sequence has the $\mathrm{n}^{\text {th }}$ term $n^{2}-6 n+10$. By completing the square, show that every term is positive.

A sequence has the $\mathrm{n}^{\text {th }}$ term $n^{2}-10 n+27$.
By completing the square, show that every term is positive.

$$
\begin{aligned}
n^{2}-10 n+27 & =(n-5)^{2}+2 \\
k^{2} & \geq 0 \\
(n-5)^{2} & \geq 0 \\
(n-5)^{2}+2 & \geq 2
\end{aligned}
$$

If $f(x)=x^{2}+3$, evaluate:

$$
f(4) \quad f(-2)
$$

If $g(x)=x^{3}-5$, evaluate:

$$
g(4) \quad g(-2)
$$

If $h(x)=x^{2}+4$, evaluate: $h(5)$
29

$$
h(-2)
$$

$$
\begin{aligned}
& f(x)=4 x-8, x \in \mathbb{R} \\
& g(x)=x^{2}-4, x \in \mathbb{R}
\end{aligned}
$$

$$
f(x)=2 x-10, x \in \mathbb{R}
$$

Find:
a) $f(-2)$
b) $g(0)$
c) The value of x for which $f(x)=g(x)$

$$
g(x)=x^{2}-9, x \in \mathbb{R}
$$

Find:
a) $f(5)$
b) $g(10)$
c) The value of x for which $f(x)=g(x)$
a) 0
b) 91
c) $x=1$

Your turn

Determine the minimum/maximum value of the function and state the value of x for which this minimum occurs:

$$
\begin{aligned}
& f(x)=x^{2}+8 x+17 \\
& g(x)=x^{2}-8 x+17 \\
& h(x)=17-x^{2} \\
& i(x)=17-8 x-x^{2}
\end{aligned}
$$

Determine the minimum/maximum value of the function and state the value of x for which this minimum occurs:

$$
f(x)=x^{2}+6 x+10
$$

Minimum of 19 when $x=-3$

$$
g(x)=x^{2}-6 x+10
$$

Minimum of 1 when $x=3$

$$
h(x)=10-x^{2}
$$

Maximum of 10 when $x=0$

$$
i(x)=10-6 x-x^{2}
$$

Maximum of 19 when $x=-3$

Your turn

Find the roots of the function:

$$
f(x)=x^{4}+x^{2}-6
$$

Find the roots of the function:

$$
\begin{gathered}
f(x)=x^{4}-x^{2}-6 \\
x= \pm \sqrt{3}
\end{gathered}
$$

Your turn

Find the roots of the function:

$$
f(x)=x^{6}-7 x^{3}-8
$$

Find the roots of the function:

$$
\begin{gathered}
f(x)=x^{6}+7 x^{3}-8 \\
x=-2, x=1
\end{gathered}
$$

$$
\begin{aligned}
& f(x)=4 x-8, x \in \mathbb{R} \\
& g(x)=x^{2}-4, x \in \mathbb{R}
\end{aligned}
$$

$$
f(x)=2 x-10, x \in \mathbb{R}
$$

Find:
a) $f(-2)$
b) $g(0)$
c) The value of x for which $f(x)=g(x)$

$$
g(x)=x^{2}-9, x \in \mathbb{R}
$$

Find:
a) $f(5)$
b) $g(10)$
c) The value of x for which $f(x)=g(x)$
a) 0
b) 91
c) $x=1$

$$
f(x)=5 x+4
$$

Find:
$f(x+3)$
$f(x-4)$
$f(5 x) \quad f\left(\frac{1}{6} x\right)$

$$
g(x)=3 x+2
$$

Find:

$g(x+2)$	$g(x-2)$
$3 x+8$	$3 x+4$
$g(2 x)$	$g\left(\frac{1}{2} x\right)$
$6 x+2$	$\frac{3}{2} x+2$

Worked example

Your turn

$$
\begin{aligned}
& f(x)=3 x^{2}-2 \\
& f(x+2) \quad f(x-2) \\
& f(2 x) \quad f\left(\frac{1}{2} x\right)
\end{aligned}
$$

Worked example

Your turn

$$
\begin{aligned}
& f(x)=3 x^{2}-5 x-2 \\
& f(x+2) \quad f(x-2) \\
& \\
& f(2 x) \quad f\left(\frac{1}{2} x\right)
\end{aligned}
$$

2.4) Quadratic graphs

Your turn

Write down the line of symmetry of:

$$
y=x^{2}+4 x-5
$$

Write down the line of symmetry of:

$$
\begin{gathered}
y=x^{2}+8 x-17 \\
x=-4
\end{gathered}
$$

$$
y=x^{2}-6 x+10
$$

Your turn

Write down the line of symmetry of:
$y=12 x-2 x^{2}-5$
Write down the line of symmetry of:

$$
\begin{gathered}
y=4 x-2 x^{2}-3 \\
x=1
\end{gathered}
$$

Worked example

Your turn

Determine the equation of this quadratic graph, in the form $y=a x^{2}+b x+c$.

Determine the equation of this quadratic graph, in the form $y=a x^{2}+b x+c$.

Determine the equation of this quadratic graph, in the form $y=a x^{2}+b x+c$, where a, b, c are integers.

Determine the equation of this quadratic graph, in the form $y=a x^{2}+b x+c$, where a, b, c are integers.

$$
y=-2 x^{2}+5 x+7
$$

Worked example

Your turn

Determine the equation of this quadratic graph, in the form $y=a x^{2}+b x+c$, where a, b, c are integers.

Determine the equation of this quadratic graph, in the form $y=a x^{2}+b x+c$, where a, b, c are integers.

Your turn

The graph of $y=a x^{2}+b x+c$ has a minimum at $(3,-5)$ and passes through $(4,0)$. Find the values of a, b and c

The graph of $y=a x^{2}+b x+c$ has a minimum at $(7,-2)$ and passes through $(8,0)$. Find the values of a, b and c

$$
a=2, b=-28, c=96
$$

Find the coordinates of the turning point of:

$$
y=x^{2}+6 x-5
$$

$$
y=x^{2}-8 x+3
$$

Find the coordinates of the turning point of:

$$
\begin{gathered}
y=x^{2}+8 x-2 \\
(-4,-18)
\end{gathered}
$$

Find the coordinates of the turning point of:

$$
y=2 x^{2}+6 x-5
$$

$$
y=2 x^{2}-8 x+3
$$

Find the coordinates of the turning point of:

$$
\begin{gathered}
y=2 x^{2}+10 x-3 \\
\left(-\frac{5}{2},-\frac{31}{2}\right)
\end{gathered}
$$

Sketch $y=x^{2}+6 x+8$, labelling the intercepts with the axes and the turning points.

Sketch $y=x^{2}+8 x+12$, labelling the intercepts with the axes and the turning points.

Sketch $y=x^{2}+6 x+9$, labelling the intercepts with the axes and the turning points.

Sketch $y=x^{2}+8 x+16$, labelling the intercepts with the axes and the turning points.

Sketch $y=x^{2}+6 x+10$, labelling the intercepts with the axes and the turning points.

Sketch $y=x^{2}+8 x+17$, labelling the intercepts with the axes and the turning points.

Sketch $y=x^{2}+6 x-7$, labelling the intercepts with the axes and the turning points.

Sketch $y=x^{2}+8 x-9$, labelling the intercepts with the axes and the turning points.

Sketch $y=x^{2}+6 x$, labelling the intercepts with the axes and the turning points.

Sketch $y=x^{2}+8 x$, labelling the intercepts with the axes and the turning points.

Sketch $y=-x^{2}+3 x-2$, labelling the intercepts with the axes and the turning points.

Sketch $y=-x^{2}+5 x-6$, labelling the intercepts with the axes and the turning points.

Your turn

Sketch $y=2 x^{2}+5 x-3$, labelling the intercepts with the axes and the turning points.

Sketch $y=2 x^{2}+9 x-5$, labelling the intercepts with the axes and the turning points.

2.5) The discriminant

Your turn

How many distinct real solutions do these equations have?

$$
x^{2}+6 x+8=0
$$

$$
x^{2}+6 x+9=0
$$

$$
x^{2}+6 x+10=0
$$

How many distinct real solutions do these equations have?

$$
\begin{gathered}
x^{2}+8 x+12=0 \\
2 \\
x^{2}+8 x+16=0 \\
1 \text { (equal roots) } \\
\\
x^{2}+8 x+17=0
\end{gathered}
$$

Your turn

Find the value of the discriminant:
$x^{2}+5 x+6=0$

Find the value of the discriminant:

$$
\begin{gathered}
x^{2}+3 x+2=0 \\
1 \\
\\
x^{2}-3 x+2.25=0 \\
0 \\
\\
\\
x^{2}-3 x+4=0 \\
-7
\end{gathered}
$$

Find the value of the discriminant:

$$
6 x^{2}-3 x-2=0
$$

$$
3 x^{2}-2 x-6=0
$$

Find the value of the discriminant:

$$
\begin{gathered}
2 x^{2}-6 x-3=0 \\
60
\end{gathered}
$$

Your turn

Find the value of the discriminant:
$4+3 x-x^{2}$

$$
4-3 x-2 x^{2}
$$

$$
4-x^{2}
$$

Find the value of the discriminant:

$$
\begin{gathered}
9-5 x-x^{2} \\
61
\end{gathered}
$$

$$
9-5 x-3 x^{2}
$$

$$
133
$$

$$
9-x^{2}
$$

$$
36
$$

Your turn

Find the range of values of k for which $f(x)=x^{2}+k x+25$ has equal roots

Find the range of values of k for which $f(x)=x^{2}+k x+9$ has equal roots

$$
k= \pm 6
$$

Your turn

Find the range of values of k for which $x^{2}+6 x+k=0$ has two distinct real solutions

Find the range of values of k for which $x^{2}+4 x+k=0$ has two distinct real solutions

$$
k<4
$$

The equation $x^{2}+4 p x+(11 p+3)=0$, where p is a positive constant, has equal roots.
a) Find the value of p
b) For this value of p solve the equation

The equation $x^{2}+2 p x+(3 p+4)=0$, where p is a positive constant, has equal roots.
a) Find the value of p
b) For this value of p solve the equation
a) $p=4$
b) $x=-4$

Your turn

$$
x^{2}+3 k x+(6 k+12)=0
$$

where k is a negative constant. Given that this equation has equal roots, determine the value of k.

$$
x^{2}+5 k x+(10 k+5)=0
$$

where k is a negative constant.
Given that this equation has equal roots, determine the value of k.

$$
k=-\frac{2}{5}
$$

Your turn

Find the range of values of k for which $5 x^{2}-3 x+k=0$ has no real solutions.

Find the range of values of k for which $3 x^{2}-5 x+k=0$ has no real solutions.

$$
k>\frac{25}{12}
$$

Prove that the function

$$
f(x)=4 x^{2}+(k+8) x-k
$$

has two distinct real roots for all values of k

Prove that the function

$$
f(x)=3 x^{2}+(k+6) x+k
$$

has two distinct real roots for all values of k
2.6) Modelling with quadratics

Worked example

Your turn

A spear is thrown over level ground from the top of a tower. The height, in metres, of the spear above the ground after t seconds is modelled by the function: $h(t)=1.65+24.5 t-4.9 t^{2}, t \geq 0$
a) Interpret the meaning of the constant term 12.25 in the model.
b) After how many seconds does the spear hit the ground?
c) Write $h(t)$ in the form $A-B(t-C)^{2}$, where A, B and C are constants to be found.
d) Using your answer to part c or otherwise, find the maximum height of the spear above the ground, and the time at which this maximum height is reached?

A spear is thrown over level ground from the top of a tower.
The height, in metres, of the spear above the ground after t seconds is modelled by the function: $h(t)=12.25+14.7 t-4.9 t^{2}, t \geq 0$
a) Interpret the meaning of the constant term 12.25 in the model.
b) After how many seconds does the spear hit the ground?
c) Write $h(t)$ in the form $A-B(t-C)^{2}$, where A, B and C are constants to be found.
d) Using your answer to part c or otherwise, find the maximum height of the spear above the ground, and the time at which this maximum height is reached?
a) The height of the tower is 12.25 m
b) 3.68 seconds (3 sf)
c) $h(t)=23.275-4.9(t-1.5)^{2}$
d) Maximum height $=23.275 \mathrm{~m}$ at $t=1.5 \mathrm{~s}$

