2) Quadratics

2.1) Solving quadratic equations	
2.2) Completing the square	
2.3) Functions	
2.4) Quadratic graphs	
2.5) The discriminant	
2.6) Modelling with quadratics	

2.1) Solving quadratic equations

Chapter CONTENTS

Worked example	Your turn
Solve:	Solve:
$(2x-3)^2 = 4$	$(3x-5)^2 = 9$
	$x = \frac{2}{3}, x = \frac{8}{3}$

Worked example	Your turn
Solve:	Solve:
$x - 8\sqrt{x} + 15 = 0$	$x - 6\sqrt{x} + 8 = 0$
	<i>x</i> = 4, <i>x</i> = 16

Work	ked example		Your turn
Solve:		Solve:	
3x +	$2\sqrt{x} - 8 = 0$	2 <i>x</i>	$+\sqrt{x}-1=0$
			$x = \frac{1}{4}$
			4

Worked example	Your turn
Solve:	Solve:
$\sqrt{x+6} = x-6$	$\sqrt{x+3} = x-3$
	x = 6 only

Worked example	Your turn
Solve:	Solve:
$(2x-3)^2 = 4$	$(3x-5)^2 = 9$
	$x = \frac{2}{3}, x = \frac{8}{3}$

Your turn
Solve: $3x^2 + 49 = 7x^2 + 13$ $x = \pm 3$

Worked example	Your turn
Solve: $2x^2 = 18$	Solve: $3x^2 = 48$ $x = \pm 4$
$(2x)^2 = 4$	$(3x)^2 = 36$ $x = \pm 2$

Worked example	Your turn
Solve: $2x^2 = \frac{32}{25}$	Solve: $5x^{2} = \frac{45}{121}$ $x = \pm \frac{3}{11}$
$3x^2 = \frac{27}{49}$	

Worked example	Your turn
Solve: $4^x - 12(2^x) + 32 = 0$	Solve: $9^x - 10(3^x) + 9 = 0$
	x = 2, x = 0
$16^x - 5(4^x) + 4 = 0$	

Worked example	Your turn
Solve: $x^4 - 5x^2 + 4 = 0$	Solve: $x^4 - 17x^2 + 16 = 0$ $x = \pm 4, x = \pm 1$
$x^4 - 13x^2 + 36 = 0$	

Worked example	Your turn
Solve:	Solve:
$x^6 - 35x^3 + 215 = 0$	$x^6 - 9x^3 + 8 = 0$
	x = 2, x = 1

Worked example
 Your turn

 Solve
$$6x^{\frac{2}{3}} + 5x^{\frac{1}{3}} - 4 = 0$$
 Solve $3y^{\frac{2}{3}} + 2y^{\frac{1}{3}} - 1 = 0$
 $y = \frac{1}{27}, y = -1$

Worked example	Your turn
Solve: $x + \frac{2}{x} = 3$	Solve: $x + \frac{4}{x} = 5$ $x = 4, x = 1$
$x - \frac{3}{x} = 5$	

Worked example	Your turn
Solve: $\frac{3}{x^2} + \frac{2}{x} = 1$	Solve: $\frac{2}{x^2} - \frac{5}{x} = 3$ $x = \frac{1}{3}, x = -2$
$\frac{2}{x^2} - \frac{7}{x} = 3$	

Worked example	Your turn
Solve:	Solve:
$x^3 + 2x^2 - 8x = 0$	$x^3 - 3x^2 - 10x = 0$
	x = 0, x = 5, x = -2

Worked example	Your turn
Solve by factorising: $x^2 + 6x + 9 = 0$	Solve by factorising: $x^{2} + 12x + 36 = 0$ x = -6
$x^2 + 8x + 16 = 0$	
$x^2 + 10x + 25 = 0$	
$x^2 + 2x + 1 = 0$	

Worked example	Your turn
Solve by factorising: $x^2 - 6x + 9 = 0$	Solve by factorising: $x^2 - 12x + 36 = 0$ x = 6
$x^2 - 8x + 16 = 0$	
$x^2 - 10x + 25 = 0$	
$x^2 - 2x + 1 = 0$	

Worked example	Your turn
Solve by factorising: $x^2 + 17x + 16 = 0$	Solve by factorising: $x^{2} + 37x + 36 = 0$ x = -36, x = -1
$x^2 + 10x + 16 = 0$	$x^{2} + 20x + 36 = 0$ x = -18, x = -2
$x^2 + 8x + 16 = 0$	$x^{2} + 15x + 36 = 0$ $x = -12, x = -3$ $x^{2} + 13x + 36 = 0$
$x^2 - 8x + 16 = 0$	$x = -9, x = -4$ $x^{2} + 12x + 36 = 0$ $x = -6$

Worked example	Your turn
Solve by factorising: $x^2 + 10x + 9 = 0$	Solve by factorising: $x^{2} + 12x + 11 = 0$ x = -11, x = -1
$x^2 + 10x + 16 = 0$	$x^{2} + 12x + 27 = 0$ x = -9, x = -3
$x^2 + 10x + 25 = 0$	$x^2 + 12x + 36 = 0$ $x = -6$
$x^2 + 10x = 0$	$x^{2} + 12x = 0$ x = 0, x = -12

Worked example	Your turn
Solve by factorising: $3x^2 + 10x + 3 = 0$	Solve by factorising: $5x^2 + 8x + 3 = 0$ $x = -\frac{3}{5}, x = -1$
$3x^2 + 10x + 8 = 0$	$5x^{2} + 16x + 12 = 0$ $x = -\frac{6}{5}, x = -2$
$3x^2 + 14x + 8 = 0$	$5x^{2} + 32x + 12 = 0$ $x = -\frac{2}{5}, x = -6$

Worked example	Your turn
Solve by factorising: $2x^2 + 8x + 6 = 0$	Solve by factorising: $3x^2 + 15x - 42 = 0$ x = -7, x = 2
$3x^2 + 21x + 30 = 0$	
$5x^2 + 5x - 30 = 0$	

Worked example	Your turn
Solve by factorising: $6 + 5x - x^2 = 0$	Solve by factorising: $12 - x - x^2 = 0$ x = 3, x = -4
$3 - 2x - x^2 = 0$	

	Worked example	Your turn
Solve:	$6 + 5r - r^2 = 0$	Solve: $6 - 5x - x^2 = 0$
	$0 + 5\lambda \lambda = 0$	x = -6, x = 1
	$-6 + 5x - x^2 = 0$	

Worked example	Your turn
Solve with the quadratic formula: $2x^2 + x - 3 = 0$	Solve with the quadratic formula: $5x^2 + 13x - 6 = 0$ $x = \frac{2}{5}, x = -3$
$3x^2 + x - 10 = 0$	

Worked example	Your turn
Solve with the quadratic formula: $2x^2 + x - 4 = 0$	Solve with the quadratic formula: $5x^2 + 13x - 7 = 0$
	$x = \frac{-13 + \sqrt{309}}{10}, x = \frac{-13 - \sqrt{309}}{10}$
$3x^2 + x - 11 = 0$	

Worked example	Your turn
Solve with the quadratic formula: $x^2 + x - 11 = 0$	Solve with the quadratic formula: $-x^{2} + 13x - 7 = 0$ $12 + \sqrt{141} = 12 + \sqrt{141}$
	$x = \frac{13 + \sqrt{141}}{2}, x = \frac{13 - \sqrt{141}}{2}$
$-2x^2 + x + 3 = 0$	

Worked example	Your turn
The solutions to a quadratic	The solutions to a quadratic
equation are $x = \frac{5 \pm \sqrt{25 + 24}}{6}$ What is the quadratic equation?	equation are $x = \frac{6 \pm \sqrt{36+8}}{2}$ What is the quadratic equation?

 $x^2 - 6x - 2 = 0$

Worked example	Your turn
How many real roots are there to: $x^2 + 6x + 8 = 0$	How many real roots are there to: $x^2 + 8x + 12 = 0$
	Two: $x = -6, x = -2$
$x^2 + 6x + 9 = 0$	$x^2 + 8x + 16 = 0$ One: $x = -4$
$x^2 + 6x + 10 = 0$	$x^2 + 8x + 17 = 0$ No real roots

Worked example	Your turn
Solve: $x + \frac{2}{x} = 3$	Solve: $x + \frac{4}{x} = 5$ $x = 4, x = 1$
$x - \frac{3}{x} = 5$	

Worked example	Your turn
Solve: $\frac{3}{x^2} + \frac{2}{x} = 1$	Solve: $\frac{2}{x^2} - \frac{5}{x} = 3$ $x = \frac{1}{3}, x = -2$
$\frac{2}{x^2} - \frac{7}{x} = 3$	

Worked example	Your turn
Solve by completing the square: $x^2 + 8x + 3 = 0$	Solve by completing the square: $x^2 + 6x + 4 = 0$
	$x = -3 + \sqrt{5}, x = -3 - \sqrt{5}$
$r^2 \pm 10r = 4 = 0$	
x + 10x - 4 = 0	

Worked example	Your turn
Solve by completing the square: $2x^2 - 8x + 3 = 0$	Solve by completing the square: $5x^{2} - 6x - 2 = 0$ $x = \frac{3 + \sqrt{19}}{5}, x = \frac{3 - \sqrt{19}}{5}$
$3x^2 - 10x - 4 = 0$	

Worked example	Your turn
Solve using three methods: $x^2 + 6x + 8 = 0$	Solve using three methods: $x^{2} + 6x + 5 = 0$ x = -5, x = -1
$x^2 + 6x + 8 = 0$	
$x^2 + 6x + 8 = 0$	

Worked example	Your turn
Two numbers have a difference of 3 and a product of 88. Find the two numbers.	Two numbers have a difference of 4 and a product of 12. Find the two numbers. x = 6, y = 2 x = -2, y = -6

Two numbers have a difference of 5 and a product of 14. Find the two numbers.

2.2) Completing the square

Chapter CONTENTS

Worked example	Your turn
Complete the square for: $x^2 + 4x$	Complete the square for: $x^2 - 10x + 3$ $(x - 5)^2 - 22$
$x^2 - 6x$	
$x^2 + 8x - 7$	

Worked example	Your turn
Complete the square for: $x^2 + 6x + 5$	Complete the square for: $x^{2} + 10x + 1$ $(x + 5)^{2} - 24$
$x^2 + 8x + 3$	

Worked example	Your turn
Complete the square for: $x^2 - 6x + 5$	Complete the square for: $x^2 - 10x + 1$ $(x - 5)^2 - 24$
$x^2 - 8x - 3$	

Your turn
Complete the square for: $x^2 + 5x + 1$
$\left(x+\frac{5}{2}\right)^2 - \frac{21}{4}$

Worked example	Your turn
Complete the square for: $x^2 - 5x - 3$	Complete the square for: $x^2 - 3x - 2$ $\left(x - \frac{3}{2}\right)^2 - \frac{17}{4}$
$x^2 - x + 2$	

Worked example	Your turn
Complete the square for: $2x^2 + 12x + 1$	Complete the square for: $5x^2 + 40x + 3$ $5(x + 4)^2 - 77$
$3x^2 + 12x + 2$	

Worked example	Your turn
Complete the square for: $2x^2 + 5x + 1$	Complete the square for: $5x^2 + 9x + 3$
	$5\left(x+\frac{9}{10}\right)^2 - \frac{21}{20}$
$3x^2 + 7x + 2$	

Worked example	Your turn
Complete the square for: $2x^2 - 5x + 3$	Complete the square for: $3x^2 - 7x + 2$
	$3\left(x-\frac{7}{6}\right)^2 - \frac{25}{12}$
$5x^2 - 3x + 1$	

Worked example	Your turn
Express in the form $a(x + b)^2 + c$: $2x^2 - 5x + 3$	Express in the form $a(x + b)^2 + c$: $3x^2 - 7x + 2$
	$3\left(x-\frac{7}{6}\right)^2 - \frac{25}{12}$

Worked example	Your turn
Complete the square for: $3 + 5x - x^2$	Complete the square for: $5 - 7x - x^2$
	$-\left(x+\frac{7}{2}\right)^2+\frac{69}{4}$
$2 - 3x - x^2$	

Worked example	Your turn
Complete the square for: $3 + 5x - 2x^2$	Complete the square for: $5 - 7x - 3x^2$
	$-3\left(x+\frac{7}{6}\right)^2 + \frac{109}{12}$
$2 - 3x - 5x^2$	

Worked example	Your turn
Solve by completing the square: $x^2 + 8x + 3 = 0$	Solve by completing the square: $x^2 + 6x + 4 = 0$
	$x = -3 + \sqrt{5}, x = -3 - \sqrt{5}$
$r^2 \pm 10r = 4 = 0$	
x + 10x - 4 = 0	

Worked example	Your turn
Solve by completing the square: $2x^2 - 8x + 3 = 0$	Solve by completing the square: $5x^{2} - 6x - 2 = 0$ $x = \frac{3 + \sqrt{19}}{5}, x = \frac{3 - \sqrt{19}}{5}$
$3x^2 - 10x - 4 = 0$	

Worked example	Your turn
Solve using three methods: $x^2 + 6x + 8 = 0$	Solve using three methods: $x^{2} + 6x + 5 = 0$ x = -5, x = -1
$x^2 + 6x + 8 = 0$	
$x^2 + 6x + 8 = 0$	

Worked example	Your turn	
By completing the square, explain why the curve $y = 2x^2 - 8x + 9$ does not intersect the <i>x</i> -axis	By completing the square, explain why the curve $y = 2x^2 - 20x +$ 51 does not intersect the <i>x</i> -axis	
	$y = 2(x - 5)^2 + 1$ Turning point at (5, 1)	

Worked example	Your turn
A sequence has the n th term	A sequence has the n th term
$n^2 - 6n + 10.$	$n^2 - 10n + 27.$
By completing the square, show	By completing the square, show
that every term is positive.	that every term is positive.
	$n^2 - 10n + 27 = (n - 5)^2 + 2$

 $k^2 \ge 0$ $(n-5)^2 \ge 0$ $(n-5)^2 + 2 \ge 2$

2.3) Functions

Chapter CONTENTS

Worked exampleYour turnIf
$$f(x) = x^2 + 3$$
, evaluate:
 $f(4)$ If $h(x) = x^2 + 4$, evaluate:
 $h(5)$ $f(4)$ $f(-2)$ If $g(x) = x^3 - 5$, evaluate:
 $g(4)$ $h(-2)$ 8

Worked example	Your turn
$f(x) = 4x - 8, x \in \mathbb{R}$ $g(x) = x^2 - 4, x \in \mathbb{R}$ Find: a) $f(-2)$ b) $a(0)$	$f(x) = 2x - 10, x \in \mathbb{R}$ $g(x) = x^2 - 9, x \in \mathbb{R}$ Find: a) $f(5)$ b) $g(10)$
c) The value of x for which $f(x) = g(x)$	b) $g(10)$ c) The value of x for which $f(x) = g(x)$ a) 0 b) 91 c) $x = 1$

Worked example	Your turn
Determine the minimum/maximum value of the function and state the value of x for which this minimum occurs: $f(x) = x^2 + 8x + 17$	Determine the minimum/maximum value of the function and state the value of x for which this minimum occurs: $f(x) = x^2 + 6x + 10$ Minimum of 19 when $x = -3$
$g(x) = x^2 - 8x + 17$	$g(x) = x^2 - 6x + 10$ Minimum of 1 when $x = 3$
$h(x) = 17 - x^2$	$h(x) = 10 - x^2$ Maximum of 10 when $x = 0$
$i(x) = 17 - 8x - x^2$	$i(x) = 10 - 6x - x^2$ Maximum of 19 when $x = -3$

Worked example	Your turn
Find the roots of the function: $f(x) = x^4 + x^2 - 6$	Find the roots of the function: $f(x) = x^4 - x^2 - 6$
	$x = \pm \sqrt{3}$

Worked example	Your turn
Find the roots of the function: $f(x) = x^6 - 7x^3 - 8$	Find the roots of the function: $f(x) = x^{6} + 7x^{3} - 8$
	x = -2, x = 1

Worked example	Your turn
$f(x) = 4x - 8, x \in \mathbb{R}$ $g(x) = x^2 - 4, x \in \mathbb{R}$ Find: a) $f(-2)$ b) $a(0)$	$f(x) = 2x - 10, x \in \mathbb{R}$ $g(x) = x^2 - 9, x \in \mathbb{R}$ Find: a) $f(5)$ b) $g(10)$
c) The value of x for which $f(x) = g(x)$	b) $g(10)$ c) The value of x for which $f(x) = g(x)$ a) 0 b) 91 c) $x = 1$

Worke	d example	Y	our turn	
f(x) = 5x + 4		g(x)	g(x) = 3x + 2	
Find:	$f(\ldots, \Lambda)$	Find:	(1, 2)	
f(x + 3)	J(x-4)	g(x+2)	g(x-z)	
		3x + 8	3x + 4	
f(5x)	$f(\frac{1}{\epsilon}x)$	g(2x)	$g(\frac{1}{2}x)$	
	0	6x + 2	3	
			$\frac{1}{2}x + 2$	

Worked example		Your turn	
$f(x) = 3x^2 - 2$		$g(x) = 5x^2 + 3$	
<i>f</i> (<i>x</i> + 2)	<i>f</i> (<i>x</i> – 2)	g(x + 4) $5(x + 4)^{2} + 3$ $= 5x^{2} + 40x + 83$	$f(x-4) = 5(x-4)^2 + 3 = 5x^2 - 40x + 83$
f(2x)	$f(\frac{1}{2}x)$	$g(3x) 5(3x)^2 + 3 = 45x^2 + 3$	$g(\frac{1}{3}x)$ $5\left(\frac{1}{3}x\right)^{2} + 3$ $= \frac{5}{9}x^{2} + 3$

Worked example		Your	turn
$f(x) = 3x^2 - 5x - 2$		g(x) = 5x	$x^2 - 2x + 3$
f(x + 2)	f(x-2)	g(x+4)	f(x-4)
		$5(x+4)^2 - 2(x+4) + 3$ = 5x ² + 38x + 75	$5(x-4)^2 - 2(x-4) + 3$ = 5x ² - 42x + 91
f(2x)	$f(\frac{1}{2}x)$	$g(3x) = 5(3x)^2 - 2(3x) + 3 = 45x^2 - 6x + 3$	$g\left(\frac{1}{3}x\right)$ $5\left(\frac{1}{3}x\right)^2 - 2\left(\frac{1}{3}x\right) + 3$ $= \frac{5}{9}x^2 - \frac{2}{3}x + 3$

2.4) Quadratic graphs

Chapter CONTENTS

Worked example	Your turn
Write down the line of symmetry of: $y = x^2 + 4x - 5$	Write down the line of symmetry of: $y = x^2 + 8x - 17$ x = -4
$y = x^2 - 6x + 10$	

Worked example	Your turn
Write down the line of symmetry of: $y = 12x - 2x^2 - 5$	Write down the line of symmetry of: $y = 4x - 2x^2 - 3$
	x = 1
$y = 12x - 3x^2 + 5$	

Worked example	Your turn
The graph of $y = ax^2 + bx + c$ has a minimum at $(3, -5)$ and passes through $(4, 0)$. Find the values of a, b and c	The graph of $y = ax^2 + bx + c$ has a minimum at $(7, -2)$ and passes through $(8, 0)$. Find the values of a, b and c
	a = 2, b = -28, c = 96
Worked example	Your turn
--	---
Find the coordinates of the turning point of: $y = x^2 + 6x - 5$	Find the coordinates of the turning point of: $y = x^2 + 8x - 2$ (-4, -18)
$y = x^2 - 8x + 3$	

Worked example	Your turn
Find the coordinates of the turning point of: $y = 2x^2 + 6x - 5$	Find the coordinates of the turning point of: $y = 2x^2 + 10x - 3$ $\left(-\frac{5}{2}, -\frac{31}{2}\right)$
$y = 2x^2 - 8x + 3$	

Worked example	Your turn
Sketch $y = x^2 + 6x + 8$, labelling the intercepts with the axes and	Sketch $y = x^2 + 8x + 12$, labelling the intercepts with the
the turning points.	axes and the turning points.

Worked example	Your turn
Sketch $y = x^2 + 6x - 7$, labelling	Sketch $y = x^2 + 8x - 9$, labelling
the intercepts with the axes and	the intercepts with the axes and
the turning points.	the turning points.

Worked example	Your turn
Sketch $y = x^2 + 6x$, labelling the intercepts with the axes and the turning points.	Sketch $y = x^2 + 8x$, labelling the intercepts with the axes and the turning points.

Worked example	Your turn
Sketch $y = -x^2 + 3x - 2$,	Sketch $y = -x^2 + 5x - 6$,
labelling the intercepts with the	labelling the intercepts with the
axes and the turning points.	axes and the turning points.

Worked example	Your turn
Sketch $y = 2x^2 + 5x - 3$,	Sketchy = $2x^2 + 9x - 5$,
axes and the turning points.	axes and the turning points.

2.5) The discriminant

Chapter CONTENTS

Worked example	Your turn
How many distinct real solutions do these equations have? $x^2 + 6x + 8 = 0$	How many distinct real solutions do these equations have? $x^{2} + 8x + 12 = 0$ 2
$x^2 + 6x + 9 = 0$	$x^{2} + 8x + 16 = 0$ 1 (equal roots)
$x^2 + 6x + 10 = 0$	$x^2 + 8x + 17 = 0$ 0

Worked exampleYour turnFind the value of the discriminant:
$$x^2 + 5x + 6 = 0$$
Find the value of the discriminant:
 $x^2 + 3x + 2 = 0$
1 $x^2 - 5x + 6.25 = 0$ $x^2 - 3x + 2.25 = 0$
 0 $x^2 - 5x + 7 = 0$ $x^2 - 3x + 4 = 0$
 -7

Worked example	Your turn
Find the value of the discriminant: $6x^2 - 3x - 2 = 0$	Find the value of the discriminant: $2x^2 - 6x - 3 = 0$ 60
$3x^2 - 2x - 6 = 0$	

Worked example	Your turn
Find the value of the discriminant: $4 + 3x - x^2$	Find the value of the discriminant: $9 - 5x - x^2$ 61
$4 - 3x - 2x^2$	$9 - 5x - 3x^2$ 133
$4 - x^2$	$9 - x^2$ 36

Worked example	Your turn
Worked example Find the range of values of k for which $f(x) = x^2 + kx + 25$ has equal roots	Find the range of values of k for which $f(x) = x^2 + kx + 9$ has equal roots $k = \pm 6$

Worked example	Your turn
Find the range of values of k for which $x^2 + 6x + k = 0$ has two distinct real solutions	Find the range of values of k for which $x^2 + 4x + k = 0$ has two distinct real solutions $k < 4$

Worked example	Your turn
The equation $x^2 + 4px + (11p + 3) = 0$, where p is a positive constant, has equal roots. a) Find the value of p	The equation $x^2 + 2px + (3p + 4) = 0$, where p is a positive constant, has equal roots. a) Find the value of p
b) For this value of p solve the equation	b) For this value of p solve the equation a) $p = 4$ b) $x = -4$

Worked example	Your turn
$x^2 + 3kx + (6k + 12) = 0$	$x^{2} + 5kx + (10k + 5) = 0$ where k is a negative constant.
where k is a negative constant.	Given that this equation has equal roots,
Given that this equation has equal roots,	determine the value of k.
determine the value of k.	$k = -\frac{2}{5}$

Worked example	Your turn
Find the range of values of k for which $5x^2 - 3x + k = 0$ has no real solutions.	Find the range of values of k for which $3x^2 - 5x + k = 0$ has no real solutions. $k > \frac{25}{12}$

Worked example	Your turn
Prove that the function $f(x) = 4x^{2} + (k+8)x - k$	Prove that the function $f(x) = 3x^2 + (k+6)x + k$
has two distinct real roots for all values of k	has two distinct real roots for all values of k
	Proof

2.6) Modelling with quadratics

Chapter CONTENTS

Worked example	Your turn
 A spear is thrown over level ground from the top of a tower. The height, in metres, of the spear above the ground after t seconds is modelled by the function: h(t) = 1.65 + 24.5t - 4.9t², t ≥ 0 a) Interpret the meaning of the constant term 12.25 in the model. b) After how many seconds does the spear hit the ground? c) Write h(t) in the form A - B(t - C)², where A, B and C are constants to be found. d) Using your answer to part c or otherwise, find the maximum height of the spear above the ground, and the time at which this maximum height is reached? 	 A spear is thrown over level ground from the top of a tower. The height, in metres, of the spear above the ground after t seconds is modelled by the function: h(t) = 12.25 + 14.7t - 4.9t², t ≥ 0 a) Interpret the meaning of the constant term 12.25 in the model. b) After how many seconds does the spear hit the ground? c) Write h(t) in the form A - B(t - C)², where A, B and C are constants to be found. d) Using your answer to part c or otherwise, find the maximum height of the spear above the ground, and the time at which this maximum height is reached? a) The height of the tower is 12.25 m b) 3.68 seconds (3 sf) c) h(t) = 23.275 - 4.9(t - 1.5)² d) Maximum height = 23.275 m at t = 1.5 s
	d) Maximum height = $23.275 m$ at $t = 1.5 s$