2) Functions and graphs

2.1) The modulus function
2.2) Functions and mappings
2.3) Composite functions
2.4) Inverse functions
2.5) $y=|f(x)|$ and $y=f(|x|)$
2.6) Combining transformations
2.7) Solving modulus problems

If $f(x)=|4 x+5|-6$, find: a) $f(5)$

If $f(x)=|2 x-3|+1$, find:
a) $f(5)$
b) $f(-2)$
c) $f(1)$

Your turn

Sketch:

$$
y=|3 x-2|
$$

Sketch:

$$
y=|2 x-3|
$$

$$
\begin{gathered}
|2 x-3|=5 \\
x=-1, x=4
\end{gathered}
$$

Your turn

Solve:

$$
\begin{aligned}
& |5 x-2|=3-\frac{1}{3} x \\
& |5-3 x|=\frac{1}{2} x+2
\end{aligned}
$$

Solve:

$$
\begin{gathered}
|3 x-5|=2-\frac{1}{2} x \\
x=\frac{6}{5}, x=2
\end{gathered}
$$

Your turn

Solve:

$$
\begin{aligned}
& |5 x-2|<3-\frac{1}{3} x \\
& |5-3 x| \leq \frac{1}{2} x+2
\end{aligned}
$$

Solve:

$$
\begin{gathered}
|3 x-5|<2-\frac{1}{2} x \\
\frac{6}{5}<x<2
\end{gathered}
$$

Your turn

Solve:

$$
\begin{aligned}
& |5 x-2|>3-\frac{1}{3} x \\
& |5-3 x| \geq \frac{1}{2} x+2
\end{aligned}
$$

Solve:

$$
\begin{gathered}
|3 x-5|>2-\frac{1}{2} x \\
x<\frac{6}{5} \cup x>2
\end{gathered}
$$

$$
|x+3|=5 x+2
$$

$$
|x+3|=x+2
$$

Solve:

$$
\begin{gathered}
|x+1|=2 x+5 \\
x=-2
\end{gathered}
$$

2.2) Functions and mappings

Your turn

State whether:

- the mapping is one-to-one, many-to-one, or one-to-many
- the mapping is a function

$$
f(x)=2 x-3, \quad x \in \mathbb{R}
$$

$$
g(x)=x^{2}, \quad x \in \mathbb{R}
$$

State whether:

- the mapping is one-to-one, many-to-one, or one-to-many
- the mapping is a function

$$
p(x)=x^{3}, \quad x \in \mathbb{R}
$$

One-to-one: a function

$$
q(x)=\left|\frac{1}{x}\right|, \quad x \in \mathbb{R}
$$

Many-to-one: Not a function

$$
h(x)=\frac{1}{x}, \quad x \in \mathbb{R}
$$

$$
r(x)=\sqrt{x}, x \in \mathbb{R}, x \geq 0, \quad x \in \mathbb{R}
$$

One-to-one: a function

$$
i(x)=\sqrt{x}, \quad x \in \mathbb{R}
$$

$$
s(x)= \pm \sqrt{x}, x \in \mathbb{R}, x \geq 0
$$

One-to-many: Not a function

Write down the largest possible domain for:

$$
f(x)=\frac{1}{x-3}
$$

$$
g(x)=\frac{2}{7 x-21}
$$

$$
h(x)=\frac{3}{2 x^{2}-x-3}
$$

$$
i(x)=\frac{4 x+5}{x^{2}-64}
$$

Write down the largest possible domain for:

$$
\begin{gathered}
p(x)=\frac{6}{x+4} \\
x \neq-4 \\
q(x)=\frac{7}{5 x+20} \\
x \neq-4 \\
r(x)=\frac{8}{3 x^{2}+10 x-8} \\
x \neq \frac{2}{3}, x \neq-4 \\
s(x)=\frac{9 x-10}{x^{2}-16} \\
x \neq-4, x \neq 4
\end{gathered}
$$

Write down the largest possible domain for:

$$
f(x)=\sqrt{x-3}
$$

$$
g(x)=\sqrt{7 x-21}
$$

$$
h(x)=\sqrt{7 x+21}
$$

$$
i(x)=\sqrt{21-7 x}
$$

Write down the largest possible domain for:

$$
\begin{gathered}
p(x)=\sqrt{x+4} \\
x \geq-4 \\
\\
q(x)=\sqrt{5 x+20} \\
x \geq-4 \\
\\
\\
r(x)=\sqrt{5 x-20} \\
x \geq 4 \\
\\
s(x)=\sqrt{20-5 x} \\
x \leq 4
\end{gathered}
$$

Write down the largest possible domain for:

$$
f(x)=\frac{\sqrt{x+3}}{x^{2}-2 x}
$$

$$
g(x)=\frac{x^{3}-2 x^{2}}{\sqrt{x^{2}+5 x+6}}
$$

Write down the largest possible domain for:

$$
\begin{gathered}
h(x)=\frac{\sqrt{x+4}}{x^{4}-25 x^{2}} \\
x \geq-4, x \neq 0, x \neq 5
\end{gathered}
$$

Find the range of the following functions:

$$
f(x)=2 x-3, \quad x=\{1,2,3,4\}
$$

$$
g(x)=3-2 x, \quad x \in \mathbb{R}, x \leq 0
$$

$$
h(x)=3-2 x, \quad x \in \mathbb{R}, 2<x<5
$$

Find the range of the following functions:

$$
\begin{gathered}
p(x)=3 x-2, \quad x=\{1,2,3,4\} \\
p(x)=\{1,4,7,10\} \\
q(x)=2-3 x, \quad x \in \mathbb{R}, x>0 \\
q(x)<2
\end{gathered}
$$

$$
r(x)=2-3 x, \quad x \in \mathbb{R},-3<x \leq 4
$$

$$
-10 \leq r(x)<11
$$

Your turn

Find the range of the following functions:

$$
f(x)=x^{4}, \quad x=\{1,2,3,4\}
$$

Find the range of the following functions:

$$
\begin{gathered}
p(x)=x^{2}, \quad x=\{1,2,3,4\} \\
p(x)=\{1,4,9,16\}
\end{gathered}
$$

$$
g(x)=x^{4}, \quad x \in \mathbb{R}, x \leq 0
$$

$$
q(x)=x^{2}, \quad x \in \mathbb{R}, x>0
$$

$$
q(x)>0
$$

$$
h(x)=x^{4}, \quad x \in \mathbb{R},-2 \leq x<5
$$

$$
r(x)=x^{2}, \quad x \in \mathbb{R},-3<x \leq 4
$$

$$
0 \leq r(x) \leq 16
$$

Find the range of the following functions:

$$
f(x)=\frac{1}{x}, \quad x=\{-1,-2,-3,-4\}
$$

$$
g(x)=\frac{1}{x-2}, \quad x \in \mathbb{R}, x \leq 1
$$

$$
h(x)=\frac{1}{x+3}, \quad x \in \mathbb{R},-2 \leq x<5
$$

Find the range of the following functions:

$$
\begin{gathered}
p(x)=\frac{1}{x}, \quad x=\{1,2,3,4\} \\
p(x)=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right\} \\
q(x)=\frac{1}{x+2}, \quad x \in \mathbb{R}, x>-1 \\
q(x)<1 \\
r(x)=\frac{1}{x-5}, \quad x \in \mathbb{R},-3<x \leq 4 \\
-1 \leq r(x)<-\frac{1}{8}
\end{gathered}
$$

Your turn

Find the range of the following functions:

$$
f(x)=\frac{1}{x}, \quad x \in \mathbb{R}, x \neq 0
$$

Find the range of the following functions:

$$
\begin{gathered}
h(x)=\frac{1}{x}-3, \quad x \in \mathbb{R}, x \neq 0 \\
h(x) \in \mathbb{R}
\end{gathered}
$$

$$
g(x)=\frac{1}{x}+2, \quad x \in \mathbb{R}, x \neq 0
$$

Your turn

Find the range of the following functions:
$f(x)=e^{x}+5, \quad x \in \mathbb{R}$

$$
g(x)=e^{x}-4, \quad x \in \mathbb{R}, x>0
$$

Find the range of the following functions:

$$
\begin{gathered}
p(x)=e^{x}+8, \quad x \in \mathbb{R} \\
p(x)>8
\end{gathered}
$$

$$
q(x)=e^{x}-7, \quad x \in \mathbb{R}, x<0
$$

$$
-7<x<-6
$$

$$
h(x)=-e^{x}-3, \quad x \in \mathbb{R}, x \leq 0
$$

$$
\begin{gathered}
r(x)=-e^{x}-6, \quad x \in \mathbb{R}, x \geq 0 \\
r(x) \leq-7
\end{gathered}
$$

Worked example

Your turn

Find the range of the following functions:
$f(x)=\ln x+5, \quad x \in \mathbb{R}, x>0$
Find the range of the following functions:

$$
\begin{gathered}
h(x)=\ln x+3, \quad x \in \mathbb{R}, x>0 \\
h(x) \in \mathbb{R}
\end{gathered}
$$

$$
g(x)=\ln x-4, \quad x \in \mathbb{R}, x>0
$$

Your turn

The function f is defined by

$$
f: x \rightarrow x^{2}-8 x+3, \quad x \in \mathbb{R}, 0 \leq x \leq 5
$$ Find the range of f.

The function h is defined by
$h: x \rightarrow x^{2}-4 x+1, \quad x \in \mathbb{R}, 0 \leq x<5$
Find the range of h.

$$
-3 \leq h(x)<6
$$

Worked example

Your turn

The function f is defined by $f(x)=x^{2}-8 x+27$ and has domain $x \geq a$. Given that $f(x)$ is a one-to-one function, find the smallest possible value of the constant a

The function h is defined by $h(x)=x^{2}-6 x+20$ and has domain $x \geq a$. Given that $f(x)$ is a one-to-one function, find the smallest possible value of the constant a

$$
a=3
$$

Worked example

Your turn

The function $f(x)$ is defined by

$$
f: x \rightarrow \begin{cases}2-5 x, & x<1 \\ x^{2}-3, & x \geq 1\end{cases}
$$

a) Sketch $y=f(x)$, and state the range of $f(x)$.
b) Solve $f(x)=22$

The function $f(x)$ is defined by

$$
f: x \rightarrow \begin{cases}5-2 x, & x<1 \\ x^{2}+3, & x \geq 1\end{cases}
$$

a) Sketch $y=f(x)$, and state the range of $f(x)$.
b) Solve $f(x)=19$
a) Sketch; $f(x)>3$
b) $x=4, x=-7$

Your turn

Find the inverse function:

$$
f(x)=\frac{2 x+3}{4}
$$

Find the inverse function:

$$
\begin{aligned}
h(x) & =\frac{4 x-3}{2} \\
h^{-1}(x) & =\frac{2 x+3}{4}
\end{aligned}
$$

$$
g(x)=\frac{3 x-2}{5}
$$

Your turn

Find the inverse function:

$$
f(x)=\frac{x}{2}-3
$$

$$
g(x)=2+\frac{x}{3}
$$

Find the inverse function:

$$
\begin{aligned}
h(x) & =5+\frac{x}{4} \\
h^{-1}(x) & =4(x-5)
\end{aligned}
$$

Your turn

Find the inverse function:

$$
f(x)=\frac{x}{2}-3
$$

$$
g(x)=\frac{x-3}{2}
$$

Find the inverse function:

$$
\begin{aligned}
h(x) & =\frac{x}{5}+4 \\
h^{-1}(x) & =5(x-4)
\end{aligned}
$$

Find the inverse function:

$$
f(x)=3(x-2)
$$

$$
g(x)=2(x+3)
$$

Find the inverse function:

$$
\begin{aligned}
& h(x)=5(x+4) \\
& h^{-1}(x)=\frac{x}{5}-4
\end{aligned}
$$

Find the inverse function:

$$
f(x)=2+\frac{3}{x}
$$

$$
g(x)=\frac{2}{x}-3
$$

Find the inverse function:

$$
\begin{gathered}
h(x)=\frac{5}{x}+4 \\
h^{-1}(x)=\frac{5}{x-4}
\end{gathered}
$$

Find the inverse function:

$$
f(x)=\frac{2}{4 x-3}
$$

$$
g(x)=\frac{3}{2-5 x}
$$

Find the inverse function:

$$
\begin{aligned}
h(x) & =\frac{4}{5-3 x} \\
h^{-1}(x) & =\frac{5 x-4}{3 x}
\end{aligned}
$$

Find the inverse function:

$$
f(x)=3 \sqrt{x}
$$

$$
g(x)=5 \sqrt[3]{x}
$$

Find the inverse function:

$$
\begin{gathered}
h(x)=4 \sqrt{x} \\
h^{-1}(x)=\frac{x^{2}}{16}
\end{gathered}
$$

Find the inverse function:

$$
f(x)=3 \sqrt{x}-2
$$

$$
g(x)=5 \sqrt[3]{x}+3
$$

Find the inverse function:

$$
h(x)=4 \sqrt{x}-5
$$

$$
h^{-1}(x)=\frac{(x+5)^{2}}{16}
$$

Find the inverse function:

$$
f(x)=\sqrt{\frac{x-2}{x+3}}
$$

Find the inverse function:

$$
\begin{aligned}
h(x) & =\sqrt{\frac{5 x-4}{x+3}} \\
h^{-1}(x) & =\frac{3 x^{2}+4}{5-x^{2}}
\end{aligned}
$$

$$
g(x)=\sqrt[3]{\frac{3 x-2}{x-4}}
$$

Find the inverse function:

$$
f(x)=x^{2}+4 x-5
$$

$$
g(x)=x^{2}-6 x+3
$$

Find the inverse function:

$$
\begin{aligned}
h(x) & =x^{2}+8 x-5 \\
h^{-1}(x) & =-4+\sqrt{x+21}
\end{aligned}
$$

Your turn

Find the inverse function:

$$
f(x)=2 x^{2}-10 x+9
$$

Find the inverse function:

$$
\begin{aligned}
& h(x)=2 x^{2}-12 x+3 \\
& h^{-1}(x)=3+\sqrt{\frac{x+15}{2}}
\end{aligned}
$$

$$
g(x)=3 x^{2}-8 x+2
$$

Worked example

Your turn

$$
f(x)=3 x-2, \text { and } g(x)=x^{2}-4
$$

$$
f(x)=3 x+2, \text { and } g(x)=x^{2}+4
$$

Find:
\(\left.f g(x) \quad \begin{array}{c}f g(x)

g f(x)

f^{2}(x)

g(x)=3 x^{2}+14\end{array}\right]\)| $g f(x)$ |
| :---: |
| $g f(x)=9 x^{2}+12 x+8$ |
| $f^{2}(x)$ |
| $f^{2}(x)=9 x+8$ |
| $g^{2}(x)$ |
| $g^{2}(x)=x^{4}+8 x^{2}+20$ |

Worked example

Your turn

$$
f(x)=3 x-2, \text { and } g(x)=x^{2}-4
$$

Find:

$f g(1)$	$f g(4)$
$g f(-2)$	62
$f^{2}(3)$	$g f(-3)$
	53
$g^{2}(-4)$	$f^{2}(2)$
	26
	$g^{2}(-1)$
29	

Worked example

Your turn

$$
f(x)=3 x-2, \text { and } g(x)=x^{2}-4
$$

$$
f(x)=3 x+2, \text { and } g(x)=x^{2}+4
$$

Solve:

$$
f g(a)=13
$$

$$
g f(b)=12
$$

$$
\begin{gathered}
g f(b)=293 \\
b=5, b=-\frac{19}{3}
\end{gathered}
$$

Worked example

Your turn

The functions f and g are defined by

$$
\begin{aligned}
& f: x \rightarrow|3 x-12| \\
& g: x \rightarrow \frac{x+2}{3}
\end{aligned}
$$

a) Find $f g(2)$
b) Solve $f g(x)=x$

The functions f and g are defined by

$$
\begin{aligned}
& f: x \rightarrow|2 x-8| \\
& g: x \rightarrow \frac{x+1}{2}
\end{aligned}
$$

a) Find $f g(3)$
b) Solve $f g(x)=x$
a) 4
b) $x=\frac{7}{2}$

Your turn

The function g is defined by

$$
g: x \rightarrow 4-3 x, \quad x \in \mathbb{R}
$$

Solve the equation

$$
g^{2}(x)+[g(x)]^{2}=0
$$

The function g is defined by

$$
g: x \rightarrow 3-4 x, \quad x \in \mathbb{R}
$$

Solve the equation

$$
\begin{gathered}
g^{2}(x)+[g(x)]^{2}=0 \\
x=0, x=\frac{1}{2}
\end{gathered}
$$

Your turn

The functions f and g are defined by

$$
\begin{array}{ll}
f: x \rightarrow e^{x}+3, & x \in \mathbb{R} \\
g: x \rightarrow \ln x, & x>0
\end{array}
$$

Find $f g(x)$, giving your answer in its simplest form.

The functions f and g are defined by

$$
\begin{array}{ll}
f: x \rightarrow e^{3 x}-2, & x \in \mathbb{R} \\
g: x \rightarrow 4 \ln (x+1), & x>-1
\end{array}
$$

Find $f g(x)$, giving your answer in its simplest form.

The functions f and g are defined by

$$
\begin{array}{ll}
f: x \rightarrow e^{2 x}+4, & x \in \mathbb{R} \\
g: x \rightarrow 3 \ln (x-1), & x>1
\end{array}
$$

Find $f g(x)$, giving your answer in its simplest form

$$
f g(x)=(x-1)^{6}+4
$$

Worked example

Your turn

The functions f and g are defined by
$f: x \rightarrow 2^{x}+3, \quad x \in \mathbb{R}$

$$
g: x \rightarrow \log _{2} x, \quad x>0
$$

Find $f g(x)$, giving your answer in its simplest form.

The functions f and g are defined by

$$
\begin{array}{ll}
f: x \rightarrow 3^{2 x}-1, & x \in \mathbb{R} \\
g: x \rightarrow 4 \log _{3}(x+5), & x>-5
\end{array}
$$

Find $f g(x)$, giving your answer in its simplest form.

The functions f and g are defined by

$$
\begin{array}{ll}
f: x \rightarrow 2^{3 x}+4, & x \in \mathbb{R} \\
g: x \rightarrow 5 \log _{2}(x-1), & \\
x>1
\end{array}
$$

Find $f g(x)$, giving your answer in its simplest form

$$
f g(x)=(x-1)^{15}+4
$$

Your turn

$$
f(x)=\frac{1}{x-1}, x \neq 1
$$

Find an expression for $f^{2}(x)$ and $f^{3}(x)$

$$
f(x)=\frac{1}{x+1}, x \neq-1
$$

Find an expression for $f^{2}(x)$ and $f^{3}(x)$

$$
\begin{gathered}
f^{2}(x)=\frac{x+1}{x+2}, x \neq-1, x \neq-2 \\
f^{3}(x)=\frac{x+2}{2 x+3}, x \neq-1, x \neq-2, x \neq-\frac{3}{2}
\end{gathered}
$$

Your turn

A function f has domain $-3 \leq x \leq 12$ and is linear from $(-3,9)$ to $(0,6)$ and from $(0,6)$ to $(12,10)$. Find the value of $f^{2}(0)$

A function f has domain $-4 \leq x \leq 13$ and is linear from $(-4,9)$ to $(0,5)$ and from $(0,5)$ to $(13,31)$.
Find the value of $f^{2}(0)$

Worked example

Your turn

Find the inverse functions:

$$
f(x)=4 x+3, \quad x \in \mathbb{R}
$$

$$
g(x)=4-3 x, \quad x \in \mathbb{R}
$$

Find the inverse function:

$$
\begin{aligned}
h(x) & =3-4 x, \quad x \in \mathbb{R} \\
h^{-1}(x) & =\frac{3-x}{4}, \quad x \in \mathbb{R}
\end{aligned}
$$

Find the inverse functions:

$$
f(x)=\frac{x-2}{2 x+1}, \quad x \neq \frac{1}{2}
$$

$$
g(x)=\frac{2 x+3}{4 x-5}, \quad x \neq \frac{5}{4}
$$

Find the inverse function:

$$
\begin{aligned}
h(x) & =\frac{x+2}{2 x-1}, \quad x \neq \frac{1}{2} \\
h^{-1}(x) & =\frac{x+2}{2 x-1}, \quad x
\end{aligned}
$$

Worked example

Your turn

Find the inverse functions:

$$
f(x)=3 x^{2}-5, \quad x \geq 0
$$

Find the inverse function:

$$
\begin{aligned}
h(x) & =2 x^{2}-7, \quad x \geq 0 \\
h^{-1}(x) & =\sqrt{\frac{x+7}{2}}, \quad x \geq-7
\end{aligned}
$$

$$
g(x)=4 x^{2}+6, \quad x \geq 0
$$

Your turn

Find the inverse functions:

$$
f(x)=x^{2}+4 x+3, \quad x \geq-2
$$

$$
g(x)=x^{2}-8 x-5, \quad x \geq 5
$$

Find the inverse function:

$$
h(x)=x^{2}-6 x-5, \quad x \geq 3
$$

$$
h^{-1}(x)=3+\sqrt{x+14}, \quad x \geq-14
$$

Your turn

Find the inverse functions:

$$
f(x)=\frac{2}{x-5}, \quad x \in \mathbb{R}, x \neq 5
$$

$$
g(x)=\frac{7}{x+2}, \quad x \in \mathbb{R}, x \neq-2
$$

Find the inverse function:

$$
\begin{aligned}
& h(x)=\frac{3}{x-1}, \quad x \in \mathbb{R}, x \neq 1 \\
& h^{-1}(x)=\frac{3+x}{x}, \quad x \neq 0
\end{aligned}
$$

Worked example

Your turn

Find the inverse functions:

$$
f(x)=e^{x}-3, \quad x \in \mathbb{R}
$$

$$
g(x)=e^{x}+4, \quad x \in \mathbb{R}
$$

Find the inverse function:

$$
h(x)=e^{x}-5, \quad x \in \mathbb{R}
$$

$$
h^{-1}(x)=\ln (x+5), \quad x>-5
$$

Your turn

Find the inverse functions:

$$
f(x)=\ln x-3, \quad x>0
$$

Find the inverse function:

$$
\begin{gathered}
h(x)=\ln (x-5), \quad x>5 \\
h^{-1}(x)=e^{x}+5, \quad x \in \mathbb{R}
\end{gathered}
$$

$$
g(x)=\ln (x-4), \quad x>4
$$

Your turn

$$
f(x)=\sqrt{x-3}\{x \in \mathbb{R}, x \geq 3\}
$$

a) State the range of $f(x)$
b) Find the function $f^{-1}(x)$ and state its domain and range
c) Sketch $y=f(x), y=f^{-1}(x)$ and $y=x$

$$
p(x)=\sqrt{x-2}\{x \in \mathbb{R}, x \geq 2\}
$$

a) State the range of $p(x)$
b) Find the function $p^{-1}(x)$ and state its domain and range
c) Sketch $y=p(x), y=p^{-1}(x)$ and $y=x$
a) $p(x) \geq 0$
b) $p^{-1}(x)=x^{2}+2$

Domain: $x \in \mathbb{R}, x \geq 0$
Range: $p^{-1}(x) \geq 2$
c) Sketch

Your turn

$$
f(x)=x^{2}-5, x \in \mathbb{R}, x \geq 0
$$

a) State the range of $f(x)$
b) Find the function $f^{-1}(x)$ and state its domain and range
c) Sketch $y=f(x), y=f^{-1}(x)$ and $y=x$
d) Solve the equation $f(x)=f^{-1}(x)$.

$$
p(x)=x^{2}-3, x \in \mathbb{R}, x \geq 0
$$

a) State the range of $p(x)$
b) Find the function $p^{-1}(x)$ and state its domain and range
c) Sketch $y=p(x), y=p^{-1}(x)$ and $y=x$
d) Solve the equation $p(x)=p^{-1}(x)$.
a) $p(x) \geq-3$
b) $p^{-1}(x)=\sqrt{x+3}$

Domain: $x \in \mathbb{R}, x \geq-3$
Range: $p^{-1}(x) \geq 0$
c) Sketch
d) $x=\frac{1+\sqrt{13}}{2}$

Graphs used with permission from DESMOS: battps://www.desmos.com/

Your turn

$$
f(x)=x^{2}+4 x+3
$$

Sketch:

- $\quad y=|f(x)|$
- $\quad y=|f(x)|$

- $y=f(|x|)$

Your turn

$$
f(x)=x^{2}+3 x-10
$$

Sketch:

- $y=|f(x)|$

Sketch:

- $y=|f(x)|$

$$
f(x)=x^{2}-3 x-10
$$

- $y=f(|x|)$

Worked example

A sketch of $y=f(x)$ is shown.

Sketch $y=|f(x)|$ and $y=f(|x|)$ on separate axes.

A sketch of $y=f(x)$ is shown.

Sketch $y=|f(x)|$ and $y=f(|x|)$ on separate axes.

$$
y=\cos x, \quad-2 \pi \leq x \leq 2 \pi
$$

Sketch:

- $y=|\cos x|$
- $y=|\sin x|$

- $y=\cos |x|$
- $y=\sin |x|$

Worked example

Your turn

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=f(x)-2$

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=f(x)+3$
Correct sketch
New y-intercept: $(0,0)$
New turning points: $(-2,10)$ and $(1,-1)$

Worked example

Your turn

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=f(x-2)$

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=f(x+3)$
Correct sketch
New turning points: $(-5,7)$ and $(-2,-4)$

Worked example

Your turn

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=3 f(x)$

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=2 f(x)$
Correct sketch
New y-intercept: $(0,-6)$
New turning points: $(-2,14)$ and $(1,-8)$

Worked example

Your turn

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=f(2 x)$

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=f(3 x)$
Correct sketch
New y-intercept: $(0,-3)$
New turning points: $\left(-\frac{2}{3}, 14\right)$ and $\left(\frac{1}{3},-8\right)$

Worked example

Your turn

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=-f(x)$

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=-f(x)$
Correct sketch
New y-intercept: $(0,3)$
New turning points: $(-2,-7)$ and $(1,4)$

Worked example

Your turn

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=f(-x)$

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=f(-x)$
Correct sketch
New y-intercept: $(0,-3)$
New turning points: $(2,-7)$ and $(-1,4)$

Worked example

Your turn

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=f(x+2)+3$
A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=f(x-3)-2$ Correct sketch
New turning points: $(1,5)$ and $(4,-6)$

Worked example

Your turn

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=-f(x)+3$

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=-f(x)-2$
Correct sketch
New y-intercept: $(0,1)$
New turning points: $(-2,-9)$ and $(1,2)$

Worked example

Your turn

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=f(-x)-3$

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=f(-x)+2$

Correct sketch

New y-intercept: $(0,-1)$
New turning points: $(2,-5)$ and $(-1,6)$

Worked example

Your turn

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=3 f(x)+2$

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=2 f(x)+3$

Correct sketch

New y-intercept: $(0,-3)$
New turning points: $(-2,17)$ and $(1,-5)$

Worked example

Your turn

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=f(2 x)-3$

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=f(3 x)-2$

Correct sketch

New y-intercept: $(0,-5)$
New turning points: $\left(-\frac{2}{3}, 5\right)$ and $\left(\frac{1}{3},-6\right)$

Worked example

Your turn

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=-f(3 x)+2$

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=-f(2 x)-3$
Correct sketch
New y-intercept: $(0,0)$
New turning points: $(-1,-10)$ and $\left(\frac{1}{2}, 1\right)$

Worked example

Your turn

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=5 f(x-2)-3$

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=7 f(x+3)+2$
Correct sketch
New turning points: $(-5,51)$ and $(-2,-26)$

Worked example

Your turn

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=-5 f(x+2)+3$

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=-7 f(x-3)-2$
Correct sketch
New turning points: $(1,-51)$ and $(4,26)$

Worked example

Your turn

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=|f(x)|$

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=|f(x)|$
Correct sketch
New y-intercept: $(0,3)$
New turning points: $(-2,7)$ and $(1,4)$

Worked example

Your turn

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=|f(-x)|$

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=|f(-x)|$
Correct sketch
New y-intercept: $(0,3)$
New turning points: $(-1,4)$ and $(2,7)$

Worked example

Your turn

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=f(|x|)$

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=f(|x|)$
Correct sketch
New y-intercept: $(0,-3)$
New turning points: $(-1,-4)$ and $(1,-4)$

Worked example

Your turn

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=-f(|x|)$

A sketch of the graph $y=f(x)$ is shown:

Sketch the graph of $y=-f(|x|)$
Correct sketch
New y-intercept: $(0,3)$
New turning points: $(-1,4)$ and $(1,4)$
2.7) Solving modulus problems

Your turn

$$
f(x)=2|x+1|-3, x \in \mathbb{R}
$$

(a) Sketch the graph of $y=f(x)$
(b) State the range of f.
(c) Solve the equation $f(x)=\frac{1}{3} x+2$

$$
p(x)=3|x-1|-2, x \in \mathbb{R}
$$

(a) Sketch the graph of $y=p(x)$
(b) State the range of p.
(c) Solve the equation $p(x)=\frac{1}{2} x+3$
(a) Sketch
(b) $p(x) \geq-2$
(c) $x=-\frac{4}{7}, x=\frac{16}{5}$

Worked example

Your turn

$$
f(x)=6-2|x+3|, x \in \mathbb{R}
$$

(a) Sketch the graph of $y=f(x)$
(b) State the range of f.
(c) Solve the inequality $f(x)>5$

$$
p(x)=6-2|x+3|, x \in \mathbb{R}
$$

(a) Sketch the graph of $y=p(x)$
(b) State the range of p.
(c) Solve the inequality $p(x)>5$
(a) Sketch
(b) $p(x) \leq 6$
(c) $-\frac{7}{2}<x<-\frac{5}{2}$

Worked example

Your turn

$$
f(x)=6+3|x-2|, x \in \mathbb{R}
$$

State the range of values of k for which $f(x)=k$ has:
a) no solutions
b) exactly one solution
c) two distinct solutions

$$
h(x)=6-2|x+3|, x \in \mathbb{R}
$$

State the range of values of k for which $f(x)=k$ has:
a) no solutions
b) exactly one solution
c) two distinct solutions
a) $k>6$
b) $k=6$
c) $k<6$

Graphs used with permission from DESMOS: https://www.desmos.com/

