# 2) Functions and graphs

| 2.1) The modulus function          |
|------------------------------------|
| 2.2) Functions and mappings        |
| 2.3) Composite functions           |
| 2.4) Inverse functions             |
| 2.5) $y =  f(x) $ and $y = f( x )$ |
| 2.6) Combining transformations     |
| 2.7) Solving modulus problems      |
|                                    |

### 2.1) The modulus function

Chapter CONTENTS

| Worked example                                | Your turn                                     |
|-----------------------------------------------|-----------------------------------------------|
| If $f(x) =  4x + 5  - 6$ , find:<br>a) $f(5)$ | If $f(x) =  2x - 3  + 1$ , find:<br>a) $f(5)$ |
|                                               | 8                                             |
| b) <i>f</i> (−2)                              | b) <i>f</i> (-2)                              |
|                                               | -6                                            |
| c) f(1)                                       | c) <i>f</i> (1)                               |
|                                               | 2                                             |
|                                               |                                               |

| Worked example         | Your turn              |
|------------------------|------------------------|
| Sketch: $y =  3x - 2 $ | Sketch: $y =  2x - 3 $ |
| y =  2 - 3x            |                        |

| Worked example        | Your turn                               |
|-----------------------|-----------------------------------------|
| Solve: $ 3x - 2  = 7$ | Solve:<br> 2x - 3  = 5<br>x = -1, x = 4 |
| 2 - 3x  = 6           |                                         |
|                       |                                         |

| Worked example                          | Your turn                                                           |
|-----------------------------------------|---------------------------------------------------------------------|
| Solve:<br>$ 5x - 2  = 3 - \frac{1}{3}x$ | Solve:<br>$ 3x - 5  = 2 - \frac{1}{2}x$<br>$x = \frac{6}{5}, x = 2$ |
| $ 5 - 3x  = \frac{1}{2}x + 2$           | $x = \frac{1}{5}, x = 2$                                            |

| Worked example                          | Your turn                                                        |
|-----------------------------------------|------------------------------------------------------------------|
| Solve:<br>$ 5x - 2  < 3 - \frac{1}{3}x$ | Solve:<br>$ 3x - 5  < 2 - \frac{1}{2}x$<br>$\frac{6}{5} < x < 2$ |
| $ 5 - 3x  \le \frac{1}{2}x + 2$         |                                                                  |

| Worked example                          | Your turn                                                               |
|-----------------------------------------|-------------------------------------------------------------------------|
| Solve:<br>$ 5x - 2  > 3 - \frac{1}{3}x$ | Solve:<br>$ 3x - 5  > 2 - \frac{1}{2}x$<br>$x < \frac{6}{5} \cup x > 2$ |
| $ 5 - 3x  \ge \frac{1}{2}x + 2$         | $x < \frac{1}{5} \cup x > 2$                                            |



#### 2.2) Functions and mappings

Chapter CONTENTS

| Worked example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Your turn                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>State whether:</li> <li>the mapping is one-to-one, many-to-one, or one-to-many</li> <li>the mapping is a function         <i>f</i>(<i>x</i>) = 2<i>x</i> − 3, <i>x</i> ∈ ℝ         <i>x</i> ∈ ℝ         <i>x</i> ∈ ℝ         <i>f</i>(<i>x</i>) = 2<i>x</i> − 3, <i>x</i> ∈ ℝ         <i>x</i> ∈ ℝ         <i>f</i>(<i>x</i>) = 2<i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i> − 3, <i>x</i> − 3, <i>x</i> − 3, <i>x</i> ∈ <i>x</i> − 3, <i>x</i></li></ul> | <ul> <li>State whether:</li> <li>the mapping is one-to-one, many-to-one, or one-to-many</li> <li>the mapping is a function         <i>p</i>(<i>x</i>) = <i>x</i><sup>3</sup>, <i>x</i> ∈ ℝ         One-to-one: a function         </li> </ul> |
| $g(x) = x^2, \qquad x \in \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $q(x) = \left \frac{1}{x}\right ,  x \in \mathbb{R}$<br>Many-to-one: Not a function                                                                                                                                                           |
| $h(x) = \frac{1}{x}, \qquad x \in \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $r(x) = \sqrt{x}, x \in \mathbb{R}, x \ge 0, \qquad x \in \mathbb{R}$<br>One-to-one: a function                                                                                                                                               |
| $i(x) = \sqrt{x}, \qquad x \in \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $s(x) = \pm \sqrt{x}, x \in \mathbb{R}, x \ge 0$<br>One-to-many: Not a function                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                               |

| Worked example                              | Your turn                                                            |
|---------------------------------------------|----------------------------------------------------------------------|
| Write down the largest possible domain for: | Write down the largest possible domain for:                          |
| $f(x) = \frac{1}{x - 3}$                    | $p(x) = \frac{6}{x+4}$                                               |
|                                             | $x \neq -4$                                                          |
| $g(x) = \frac{2}{7x - 21}$                  | $q(x) = \frac{7}{5x + 20}$ $x \neq -4$                               |
| $h(x) = \frac{3}{2x^2 - x - 3}$             | $r(x) = \frac{8}{3x^2 + 10x - 8}$                                    |
| $i(x) = \frac{4x + 5}{x^2 - 64}$            | $x \neq \frac{2}{3}, x \neq -4$<br>$s(x) = \frac{9x - 10}{x^2 - 16}$ |
| $x^2 - 64$                                  | $x^2 - 16$ $x \neq -4, x \neq 4$                                     |

| Worked example                                                     | Your turn                                                                        |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Write down the largest possible domain for:<br>$f(x) = \sqrt{x-3}$ | Write down the largest possible domain for:<br>$p(x) = \sqrt{x+4}$<br>$x \ge -4$ |
| $g(x) = \sqrt{7x - 21}$                                            | $q(x) = \sqrt{5x + 20}$ $x \ge -4$                                               |
| $h(x) = \sqrt{7x + 21}$                                            | $r(x) = \sqrt{5x - 20}$ $x \ge 4$                                                |
| $i(x) = \sqrt{21 - 7x}$                                            | $s(x) = \sqrt{20 - 5x}$ $x \le 4$                                                |

| Worked example                                                                      | Your turn                                                                              |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Write down the largest possible domain for:<br>$f(x) = \frac{\sqrt{x+3}}{x^2 - 2x}$ | Write down the largest possible domain for:<br>$h(x) = \frac{\sqrt{x+4}}{x^4 - 25x^2}$ |
| $g(x) = \frac{x^3 - 2x^2}{\sqrt{x^2 + 5x + 6}}$                                     | $x \ge -4, x \neq 0, x \neq 5$                                                         |

| Worked example                                                                     | Your turn                                                                          |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Find the range of the following functions:<br>$f(x) = 2x - 3,  x = \{1, 2, 3, 4\}$ | Find the range of the following functions:<br>$p(x) = 3x - 2,  x = \{1, 2, 3, 4\}$ |
|                                                                                    | $p(x) = \{1, 4, 7, 10\}$                                                           |
| $g(x) = 3 - 2x, \qquad x \in \mathbb{R}, x \le 0$                                  | $q(x) = 2 - 3x, \qquad x \in \mathbb{R}, x > 0$ $q(x) < 2$                         |
| $h(x) = 3 - 2x,  x \in \mathbb{R}, 2 < x < 5$                                      | $r(x) = 2 - 3x,  x \in \mathbb{R}, -3 < x \le 4$<br>$-10 \le r(x) < 11$            |

| Worked example                                                                    | Your turn                                                                         |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Find the range of the following functions:<br>$f(x) = x^4$ , $x = \{1, 2, 3, 4\}$ | Find the range of the following functions:<br>$p(x) = x^2$ , $x = \{1, 2, 3, 4\}$ |
|                                                                                   | $p(x) = \{1, 4, 9, 16\}$                                                          |
| $g(x) = x^4, \qquad x \in \mathbb{R}, x \le 0$                                    | $q(x) = x^2,  x \in \mathbb{R}, x > 0$ $q(x) > 0$                                 |
| $h(x) = x^4, \qquad x \in \mathbb{R}, -2 \le x < 5$                               | $r(x) = x^2, \qquad x \in \mathbb{R}, -3 < x \le 4$ $0 \le r(x) \le 16$           |

Worked exampleYour turnFind the range of the following functions:
$$f(x) = \frac{1}{x}, \quad x = \{-1, -2, -3, -4\}$$
Find the range of the following functions: $g(x) = \frac{1}{x}, \quad x = \{-1, -2, -3, -4\}$  $p(x) = \frac{1}{x}, \quad x = \{1, 2, 3, 4\}$  $g(x) = \frac{1}{x-2}, \quad x \in \mathbb{R}, x \le 1$  $q(x) = \frac{1}{x+2}, \quad x \in \mathbb{R}, x > -1$  $q(x) = \frac{1}{x+3}, \quad x \in \mathbb{R}, -2 \le x < 5$  $r(x) = \frac{1}{x-5}, \quad x \in \mathbb{R}, -3 < x \le 4$  $-1 \le r(x) < -\frac{1}{8}$ 

| Worked example                                              | Your turn                                                   |
|-------------------------------------------------------------|-------------------------------------------------------------|
| Find the range of the following functions:                  | Find the range of the following functions:                  |
| $f(x) = \frac{1}{x}, \qquad x \in \mathbb{R}, x \neq 0$     | $h(x) = \frac{1}{x} - 3, \qquad x \in \mathbb{R}, x \neq 0$ |
|                                                             | $h(x) \in \mathbb{R}$                                       |
|                                                             |                                                             |
|                                                             |                                                             |
|                                                             |                                                             |
|                                                             |                                                             |
| 1                                                           |                                                             |
| $g(x) = \frac{1}{x} + 2, \qquad x \in \mathbb{R}, x \neq 0$ |                                                             |
|                                                             |                                                             |
|                                                             |                                                             |
|                                                             |                                                             |
|                                                             |                                                             |
|                                                             |                                                             |
|                                                             |                                                             |
|                                                             |                                                             |
|                                                             |                                                             |

| Worked example                                                                    | Your turn                                                                         |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Find the range of the following functions:<br>$f(x) = e^x + 5,  x \in \mathbb{R}$ | Find the range of the following functions:<br>$p(x) = e^x + 8,  x \in \mathbb{R}$ |
|                                                                                   | p(x) > 8                                                                          |
| $g(x) = e^x - 4, \qquad x \in \mathbb{R}, x > 0$                                  | $q(x) = e^{x} - 7, \qquad x \in \mathbb{R}, x < 0$ $-7 < x < -6$                  |
| $h(x) = -e^x - 3, \qquad x \in \mathbb{R}, x \le 0$                               | $r(x) = -e^{x} - 6, \qquad x \in \mathbb{R}, x \ge 0$ $r(x) \le -7$               |

| Worked example                                                                             | Your turn                                                                                  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Find the range of the following functions:<br>$f(x) = \ln x + 5,  x \in \mathbb{R}, x > 0$ | Find the range of the following functions:<br>$h(x) = \ln x + 3,  x \in \mathbb{R}, x > 0$ |
|                                                                                            | $h(x) \in \mathbb{R}$                                                                      |
|                                                                                            |                                                                                            |
|                                                                                            |                                                                                            |
|                                                                                            |                                                                                            |
| $g(x) = \ln x - 4, \qquad x \in \mathbb{R}, x > 0$                                         |                                                                                            |
|                                                                                            |                                                                                            |
|                                                                                            |                                                                                            |
|                                                                                            |                                                                                            |
|                                                                                            |                                                                                            |
|                                                                                            |                                                                                            |
|                                                                                            |                                                                                            |

| Worked example                                                                                                         | Your turn                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| The function $f$ is defined by<br>$f: x \to x^2 - 8x + 3,  x \in \mathbb{R}, 0 \le x \le 5$<br>Find the range of $f$ . | The function <i>h</i> is defined by<br>$h: x \to x^2 - 4x + 1,  x \in \mathbb{R}, 0 \le x < 5$<br>Find the range of <i>h</i> .<br>$-3 \le h(x) < 6$ |
| The function $f$ is defined by<br>$g: x \to x^2 + 6x - 2,  x \in \mathbb{R}, -5 < x \le 0$<br>Find the range of $f$ .  |                                                                                                                                                     |

| Worked example                                                                                                                                                                          | Your turn                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The function $f$ is defined by $f(x) = x^2 - 8x + 27$ and has<br>domain $x \ge a$ . Given that $f(x)$ is a one-to-one function,<br>find the smallest possible value of the constant $a$ | The function <i>h</i> is defined by $h(x) = x^2 - 6x + 20$ and has<br>domain $x \ge a$ . Given that $f(x)$ is a one-to-one function,<br>find the smallest possible value of the constant <i>a</i><br>a = 3 |
| The function $g$ is defined by $g(x) = x^2 + 4x + 15$ and has<br>domain $x \le a$ . Given that $g(x)$ is a one-to-one function,<br>find the smallest possible value of the constant $a$ |                                                                                                                                                                                                            |

#### Worked example Your turn The function f(x) is defined by The function f(x) is defined by $f: x \to \begin{cases} 5-2x, & x < 1\\ x^2+3, & x \ge 1 \end{cases}$ $f: x \to \begin{cases} 2 - 5x, & x < 1 \\ x^2 - 3, & x \ge 1 \end{cases}$ Sketch y = f(x), and state the range of f(x). Sketch y = f(x), and state the range of f(x). a) Solve f(x) = 22Solve f(x) = 19b) Sketch; f(x) > 3a) b) x = 4, x = -7-10 O -10 0 10 -10

a)

b)

| Worked example                                        | Your turn                                                                              |
|-------------------------------------------------------|----------------------------------------------------------------------------------------|
| Find the inverse function:<br>$f(x) = \frac{2x+3}{4}$ | Find the inverse function:<br>$h(x) = \frac{4x - 3}{2}$ $h^{-1}(x) = \frac{2x + 3}{4}$ |
| $g(x) = \frac{3x - 2}{5}$                             |                                                                                        |

| Worked example             | Your turn                                       |
|----------------------------|-------------------------------------------------|
| Find the inverse function: | Find the inverse function:                      |
| $f(x) = \frac{x}{2} - 3$   | $h(x) = 5 + \frac{x}{4}$ $h^{-1}(x) = 4(x - 5)$ |
|                            | $h^{-1}(x) = 4(x - 5)$                          |
|                            |                                                 |
|                            |                                                 |
|                            |                                                 |
| $g(x) = 2 + \frac{x}{3}$   |                                                 |
| - 3                        |                                                 |
|                            |                                                 |
|                            |                                                 |
|                            |                                                 |
|                            |                                                 |

| Worked example             | Your turn                  |
|----------------------------|----------------------------|
| Find the inverse function: | Find the inverse function: |
| $f(x) = \frac{x}{2} - 3$   | $h(x) = \frac{x}{5} + 4$   |
|                            | $h^{-1}(x) = 5(x - 4)$     |
|                            |                            |
|                            |                            |
|                            |                            |
| $g(x) = \frac{x-3}{2}$     |                            |
| Δ.                         |                            |
|                            |                            |
|                            |                            |
|                            |                            |

| Worked example                                | Your turn                                                                      |
|-----------------------------------------------|--------------------------------------------------------------------------------|
| Find the inverse function:<br>f(x) = 3(x - 2) | Find the inverse function:<br>h(x) = 5(x + 4)<br>$h^{-1}(x) = \frac{x}{5} - 4$ |
| g(x) = 2(x+3)                                 |                                                                                |

| Worked example                                         | Your turn                                                                            |
|--------------------------------------------------------|--------------------------------------------------------------------------------------|
| Find the inverse function:<br>$f(x) = 2 + \frac{3}{x}$ | Find the inverse function:<br>$h(x) = \frac{5}{x} + 4$ $h^{-1}(x) = \frac{5}{x - 4}$ |
| $g(x) = \frac{2}{x} - 3$                               |                                                                                      |

| Worked example                                          | Your turn                                                                               |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Find the inverse function:<br>$f(x) = \frac{2}{4x - 3}$ | Find the inverse function:<br>$h(x) = \frac{4}{5 - 3x}$ $h^{-1}(x) = \frac{5x - 4}{3x}$ |
| $g(x) = \frac{3}{2 - 5x}$                               |                                                                                         |

| Worked example                                   | Your turn                                                                        |
|--------------------------------------------------|----------------------------------------------------------------------------------|
| Find the inverse function:<br>$f(x) = 3\sqrt{x}$ | Find the inverse function:<br>$h(x) = 4\sqrt{x}$<br>$h^{-1}(x) = \frac{x^2}{16}$ |
| $g(x) = 5\sqrt[3]{x}$                            |                                                                                  |

| Worked example                                       | Your turn                                                                             |
|------------------------------------------------------|---------------------------------------------------------------------------------------|
| Find the inverse function:<br>$f(x) = 3\sqrt{x} - 2$ | Find the inverse function:<br>$h(x) = 4\sqrt{x} - 5$ $h^{-1}(x) = \frac{(x+5)^2}{16}$ |
| $g(x) = 5\sqrt[3]{x} + 3$                            |                                                                                       |

| Worked example                                                | Your turn                                                                                                 |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Find the inverse function:<br>$f(x) = \sqrt{\frac{x-2}{x+3}}$ | Find the inverse function:<br>$h(x) = \sqrt{\frac{5x - 4}{x + 3}}$ $h^{-1}(x) = \frac{3x^2 + 4}{5 - x^2}$ |
| $g(x) = \sqrt[3]{\frac{3x-2}{x-4}}$                           |                                                                                                           |

| Worked example             | Your turn                        |
|----------------------------|----------------------------------|
| Find the inverse function: | Find the inverse function:       |
| $f(x) = x^2 + 4x - 5$      | $h(x) = x^2 + 8x - 5$            |
|                            | $h^{-1}(x) = -4 + \sqrt{x + 21}$ |
|                            |                                  |
|                            |                                  |
|                            |                                  |
|                            |                                  |
| $g(x) = x^2 - 6x + 3$      |                                  |
|                            |                                  |
|                            |                                  |
|                            |                                  |
|                            |                                  |

| Worked example                                        | Your turn                                             |
|-------------------------------------------------------|-------------------------------------------------------|
| Find the inverse function:<br>$f(x) = 2x^2 - 10x + 9$ | Find the inverse function:<br>$h(x) = 2x^2 - 12x + 3$ |
|                                                       | $h^{-1}(x) = 3 + \sqrt{\frac{x+15}{2}}$               |
| $g(x) = 3x^2 - 8x + 2$                                |                                                       |
|                                                       |                                                       |
|                                                       |                                                       |
|                                                       |                                                       |

## 2.3) Composite functions

Chapter CONTENTS

| Worked example                         | Your turn                                   |
|----------------------------------------|---------------------------------------------|
| $f(x) = 3x - 2$ , and $g(x) = x^2 - 4$ | $f(x) = 3x + 2$ , and $g(x) = x^2 + 4$      |
| Find: $fg(x)$                          | Find:<br>$fg(x)$ $fg(x) = 3x^2 + 14$        |
| gf(x)                                  | $gf(x)$ $gf(x) = 9x^2 + 12x + 8$            |
| $f^2(x)$                               | $f^{2}(x)$ $f^{2}(x) = 9x + 8$              |
| $g^2(x)$                               | $g^{2}(x)$ $g^{2}(x) = x^{4} + 8x^{2} + 20$ |
|                                        |                                             |

| Worked example                                  | Your turn                              |
|-------------------------------------------------|----------------------------------------|
| $f(x) = 3x - 2$ , and $g(x) = x^2 - 4$<br>Find: | $f(x) = 3x + 2$ , and $g(x) = x^2 + 4$ |
| Find: $fg(1)$                                   | Find:<br><i>fg</i> (4)<br><u>62</u>    |
| <i>gf</i> (-2)                                  | <i>gf</i> (-3)<br>53                   |
| f <sup>2</sup> (3)                              | f <sup>2</sup> (2)<br>26               |
| g <sup>2</sup> (-4)                             | <i>g</i> <sup>2</sup> (-1)<br>29       |
|                                                 |                                        |

| Worked example                                   | Your turn                                       |
|--------------------------------------------------|-------------------------------------------------|
| $f(x) = 3x - 2$ , and $g(x) = x^2 - 4$<br>Solve: | $f(x) = 3x + 2$ , and $g(x) = x^2 + 4$<br>Find: |
| solve: $fg(a) = 13$                              | Find:<br>$fg(a) = 62$ $a = \pm 4$               |
| gf(b) = 12                                       | gf(b) = 293<br>$b = 5, b = -\frac{19}{3}$       |
|                                                  |                                                 |

| Worked example                                                                                                                            | Your turn                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The functions f and g are defined by<br>$f: x \rightarrow  3x - 12 $ $g: x \rightarrow \frac{x+2}{3}$ a) Find fg(2)<br>b) Solve fg(x) = x | The functions $f$ and $g$ are defined by<br>$f: x \rightarrow  2x - 8 $ $g: x \rightarrow \frac{x+1}{2}$ a) Find $fg(3)$ b) Solve $fg(x) = x$ a) 4<br>b) $x = \frac{7}{2}$ |
|                                                                                                                                           |                                                                                                                                                                            |

| Worked example                                                                                                                | Your turn                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The function g is defined by<br>$g: x \rightarrow 4 - 3x,  x \in \mathbb{R}$<br>Solve the equation<br>$g^2(x) + [g(x)]^2 = 0$ | The function $g$ is defined by<br>$g: x \rightarrow 3 - 4x,  x \in \mathbb{R}$<br>Solve the equation<br>$g^2(x) + [g(x)]^2 = 0$<br>$x = 0, x = \frac{1}{2}$ |
|                                                                                                                               |                                                                                                                                                             |

| Worked example                                                                                                                                                                               | Your turn                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The functions $f$ and $g$ are defined by<br>$f: x \to e^x + 3,  x \in \mathbb{R}$<br>$g: x \to \ln x,  x > 0$<br>Find $fg(x)$ , giving your answer in its simplest form.                     | The functions $f$ and $g$ are defined by<br>$f: x \to e^{2x} + 4, \qquad x \in \mathbb{R}$<br>$g: x \to 3\ln(x-1), \qquad x > 1$<br>Find $fg(x)$ , giving your answer in its simplest form |
|                                                                                                                                                                                              | $fg(x) = (x-1)^6 + 4$                                                                                                                                                                      |
| The functions $f$ and $g$ are defined by<br>$f: x \to e^{3x} - 2, \qquad x \in \mathbb{R}$<br>$g: x \to 4\ln(x+1), \qquad x > -1$<br>Find $fg(x)$ , giving your answer in its simplest form. |                                                                                                                                                                                            |

| Worked example                                                                                                                                                                                     | Your turn                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The functions $f$ and $g$ are defined by<br>$f: x \to 2^x + 3,  x \in \mathbb{R}$<br>$g: x \to \log_2 x,  x > 0$<br>Find $fg(x)$ , giving your answer in its simplest form.                        | The functions $f$ and $g$ are defined by<br>$f: x \to 2^{3x} + 4, \qquad x \in \mathbb{R}$<br>$g: x \to 5 \log_2(x - 1), \qquad x > 1$<br>Find $fg(x)$ , giving your answer in its simplest form |
|                                                                                                                                                                                                    | $fg(x) = (x - 1)^{15} + 4$                                                                                                                                                                       |
| The functions $f$ and $g$ are defined by<br>$f: x \to 3^{2x} - 1, \qquad x \in \mathbb{R}$<br>$g: x \to 4 \log_3(x + 5), \qquad x > -5$<br>Find $fg(x)$ , giving your answer in its simplest form. |                                                                                                                                                                                                  |

## Worked example

$$f(x) = \frac{1}{x-1}, x \neq 1$$
  
Find an expression for  $f^2(x)$  and  $f^3(x)$ 

### Your turn

$$f(x) = \frac{1}{x+1}, x \neq -1$$
  
Find an expression for  $f^2(x)$  and  $f^3(x)$ 

$$f^{2}(x) = \frac{x+1}{x+2}, x \neq -1, x \neq -2$$
$$f^{3}(x) = \frac{x+2}{2x+3}, x \neq -1, x \neq -2, x \neq -\frac{3}{2}$$

| Worked example                                                                                                                                   | Your turn                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| A function $f$ has domain $-3 \le x \le 12$ and is linear from $(-3,9)$ to $(0,6)$ and from $(0,6)$ to $(12,10)$ .<br>Find the value of $f^2(0)$ | A function $f$ has domain $-4 \le x \le 13$ and is linear from $(-4, 9)$ to $(0, 5)$ and from $(0, 5)$ to $(13, 31)$ .<br>Find the value of $f^2(0)$ |
|                                                                                                                                                  | 15                                                                                                                                                   |
|                                                                                                                                                  |                                                                                                                                                      |
|                                                                                                                                                  |                                                                                                                                                      |
|                                                                                                                                                  |                                                                                                                                                      |
|                                                                                                                                                  |                                                                                                                                                      |
|                                                                                                                                                  |                                                                                                                                                      |
|                                                                                                                                                  |                                                                                                                                                      |
|                                                                                                                                                  |                                                                                                                                                      |
|                                                                                                                                                  |                                                                                                                                                      |

## 2.4) Inverse functions

| Worked example                                                    | Your turn                                                        |
|-------------------------------------------------------------------|------------------------------------------------------------------|
| Find the inverse functions:<br>$f(x) = 4x + 3,  x \in \mathbb{R}$ | Find the inverse function:<br>$h(x) = 3 - 4x,  x \in \mathbb{R}$ |
|                                                                   | $h^{-1}(x) = \frac{3-x}{4}, \qquad x \in \mathbb{R}$             |
|                                                                   |                                                                  |
|                                                                   |                                                                  |
|                                                                   |                                                                  |
| $g(x) = 4 - 3x, \qquad x \in \mathbb{R}$                          |                                                                  |
|                                                                   |                                                                  |
|                                                                   |                                                                  |
|                                                                   |                                                                  |
|                                                                   |                                                                  |

| Worked example                                                                      | Your turn                                                                    |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Find the inverse functions:<br>$f(x) = \frac{x-2}{2x+1}, \qquad x \neq \frac{1}{2}$ | Find the inverse function:<br>$h(x) = \frac{x+2}{2x-1},  x \neq \frac{1}{2}$ |
|                                                                                     | $h^{-1}(x) = \frac{x+2}{2x-1}, \qquad x \neq \frac{1}{2}$                    |
|                                                                                     |                                                                              |
| 2x + 3 5                                                                            |                                                                              |
| $g(x) = \frac{2x+3}{4x-5}, \qquad x \neq \frac{5}{4}$                               |                                                                              |
|                                                                                     |                                                                              |
|                                                                                     |                                                                              |
|                                                                                     |                                                                              |

| Worked example                                             | Your turn                                                 |
|------------------------------------------------------------|-----------------------------------------------------------|
| Find the inverse functions:<br>$f(x) = 3x^2 - 5,  x \ge 0$ | Find the inverse function:<br>$h(x) = 2x^2 - 7,  x \ge 0$ |
|                                                            | $h^{-1}(x) = \sqrt{\frac{x+7}{2}}, \qquad x \ge -7$       |
|                                                            |                                                           |
| $g(x) = 4x^2 + 6, \qquad x \ge 0$                          |                                                           |
|                                                            |                                                           |
|                                                            |                                                           |
|                                                            |                                                           |

| Worked example                                                  | Your turn                                                     |
|-----------------------------------------------------------------|---------------------------------------------------------------|
| Find the inverse functions:<br>$f(x) = x^2 + 4x + 3,  x \ge -2$ | Find the inverse function:<br>$h(x) = x^2 - 6x - 5,  x \ge 3$ |
|                                                                 | $h^{-1}(x) = 3 + \sqrt{x + 14}, \qquad x \ge -14$             |
|                                                                 |                                                               |
| $g(x) = x^2 - 8x - 5, \qquad x \ge 5$                           |                                                               |
| $g(x) = x = 0x = 3,  x \ge 3$                                   |                                                               |
|                                                                 |                                                               |
|                                                                 |                                                               |
|                                                                 |                                                               |

| Worked example                                             | Your turn                                                 |
|------------------------------------------------------------|-----------------------------------------------------------|
| Find the inverse functions:                                | Find the inverse function:                                |
| $f(x) = \frac{2}{x-5}, \qquad x \in \mathbb{R}, x \neq 5$  | $h(x) = \frac{3}{x-1}, \qquad x \in \mathbb{R}, x \neq 1$ |
|                                                            | $h^{-1}(x) = \frac{3+x}{x}, \qquad x \neq 0$              |
|                                                            |                                                           |
|                                                            |                                                           |
| $g(x) = \frac{7}{x+2}, \qquad x \in \mathbb{R}, x \neq -2$ |                                                           |
|                                                            |                                                           |
|                                                            |                                                           |
|                                                            |                                                           |
|                                                            |                                                           |

| Worked example                                    |                    | Your turn                                        |                    |
|---------------------------------------------------|--------------------|--------------------------------------------------|--------------------|
| Find the inverse functions:<br>$f(x) = e^x - 3$ , | $x \in \mathbb{R}$ | Find the inverse function:<br>$h(x) = e^x - 5$ , | $x \in \mathbb{R}$ |
|                                                   |                    | $h^{-1}(x) = \ln(x+5),$                          | x > -5             |
|                                                   |                    |                                                  |                    |
|                                                   |                    |                                                  |                    |
|                                                   |                    |                                                  |                    |
|                                                   |                    |                                                  |                    |
| $g(x) = e^x + 4,$                                 | $x \in \mathbb{R}$ |                                                  |                    |
|                                                   |                    |                                                  |                    |
|                                                   |                    |                                                  |                    |
|                                                   |                    |                                                  |                    |
|                                                   |                    |                                                  |                    |
|                                                   |                    |                                                  |                    |
|                                                   |                    |                                                  |                    |
|                                                   |                    |                                                  |                    |

| Worked example                                            | Your turn                                                                                             |  |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| Find the inverse functions:<br>$f(x) = \ln x - 3,  x > 0$ | Find the inverse function:<br>$h(x) = \ln(x - 5),  x > 5$<br>$h^{-1}(x) = e^x + 5,  x \in \mathbb{R}$ |  |
| $g(x) = \ln(x - 4), \qquad x > 4$                         |                                                                                                       |  |
|                                                           |                                                                                                       |  |

| Worked example                                                                                                                                                                              | Your turn                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $f(x) = \sqrt{x-3} \{x \in \mathbb{R}, x \ge 3\}$ ) State the range of $f(x)$ ) Find the function $f^{-1}(x)$ and state its domain and range ) Sketch $y = f(x), y = f^{-1}(x)$ and $y = x$ | $p(x) = \sqrt{x - 2} \{x \in \mathbb{R}, x \ge 2\}$ a) State the range of $p(x)$<br>b) Find the function $p^{-1}(x)$ and state its domain and range<br>c) Sketch $y = p(x), y = p^{-1}(x)$ and $y = x$<br>a) $p(x) \ge 0$<br>b) $p^{-1}(x) = x^2 + 2$<br>Domain: $x \in \mathbb{R}, x \ge 0$<br>Range: $p^{-1}(x) \ge 2$<br>c) Sketch |
|                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       |

a) b)

c)

|                      | Worked example                                                                                                                                                                                                                                        | Your turn                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a)<br>b)<br>c)<br>d) | Worked example<br>$f(x) = x^2 - 5, x \in \mathbb{R}, x \ge 0.$<br>State the range of $f(x)$<br>Find the function $f^{-1}(x)$ and state its domain and range<br>Sketch $y = f(x), y = f^{-1}(x)$ and $y = x$<br>Solve the equation $f(x) = f^{-1}(x).$ | Your turn<br>$p(x) = x^{2} - 3, x \in \mathbb{R}, x \ge 0.$ a) State the range of $p(x)$<br>b) Find the function $p^{-1}(x)$ and state its domain and range<br>c) Sketch $y = p(x), y = p^{-1}(x)$ and $y = x$<br>d) Solve the equation $p(x) = p^{-1}(x)$ .<br>a) $p(x) \ge -3$<br>b) $p^{-1}(x) = \sqrt{x+3}$<br>Domain: $x \in \mathbb{R}, x \ge -3$<br>Range: $p^{-1}(x) \ge 0$<br>c) Sketch<br>d) $x = \frac{1+\sqrt{13}}{2}$ |
|                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | Graphs used with permission from DESMOS: https://www.desmos.com/                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                    |

2.5) 
$$y = |f(x)|$$
 and  $y = f(|x|)$ 

| Worked example                                     | Your turn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $f(x) = x^2 + 4x + 3$<br>Sketch:<br>• $y =  f(x) $ | Sketch:<br>• $y =  f(x) $<br>$f(x) = x^2 - 4x + 3$<br>$f(x) = x^2 - 4x + 3$<br>f( |
| • $y = f( x )$                                     | • $y = f( x )$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Worked example                                      | Your turn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $f(x) = x^2 + 3x - 10$<br>Sketch:<br>• $y =  f(x) $ | Sketch:<br>• $y =  f(x) $<br>$f(x) = x^2 - 3x - 10$<br>y =  f(x) <br>$f(x) = x^2 - 3x - 10$<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |
| • $y = f( x )$                                      | • $y = f( x )$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

## Worked example

A sketch of y = f(x) is shown.



Sketch y = |f(x)| and y = f(|x|) on separate axes.

#### Your turn

A sketch of y = f(x) is shown.



Sketch y = |f(x)| and y = f(|x|) on separate axes.





# 2.6) Combining transformations





































# 2.7) Solving modulus problems

|                   | Worked example                                                                                                                                        | Your turn                                                                                                                                                      |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)<br>(b)<br>(c) | $f(x) = 2 x + 1  - 3, x \in \mathbb{R}$<br>Sketch the graph of $y = f(x)$<br>State the range of $f$ .<br>Solve the equation $f(x) = \frac{1}{3}x + 2$ | $p(x) = 3 x - 1  - 2, x \in \mathbb{R}$ (a) Sketch the graph of $y = p(x)$<br>(b) State the range of $p$ .<br>(c) Solve the equation $p(x) = \frac{1}{2}x + 3$ |
|                   |                                                                                                                                                       | (a) Sketch<br>(b) $p(x) \ge -2$<br>(c) $x = -\frac{4}{7}, x = \frac{16}{5}$                                                                                    |
|                   |                                                                                                                                                       | -5<br>0<br>(-0.571, 2.714)<br>(0, 1)<br>-5<br>0<br>(1, -2)<br>-5<br>-5                                                                                         |
|                   | Graphs used with permission from DESMOS: <u>https://www.desmos.com/</u>                                                                               |                                                                                                                                                                |

|                   | Worked example                                                                                                                                             | Your turn                                                                                                                                                                                                                                 |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)<br>(b)<br>(c) | Worked example<br>$f(x) = 6 - 2 x + 3 , x \in \mathbb{R}$<br>Sketch the graph of $y = f(x)$<br>State the range of $f$ .<br>Solve the inequality $f(x) > 5$ | Your turn<br>$p(x) = 6 - 2 x + 3 , x \in \mathbb{R}$ (a) Sketch the graph of $y = p(x)$<br>(b) State the range of $p$ .<br>(c) Solve the inequality $p(x) > 5$<br>(a) Sketch<br>(b) $p(x) \le 6$<br>(c) $-\frac{7}{2} < x < -\frac{5}{2}$ |
|                   |                                                                                                                                                            |                                                                                                                                                                                                                                           |
|                   | Graphs used with permission from I                                                                                                                         | ESMOS: <u>https://www.desmos.com/</u>                                                                                                                                                                                                     |

| Worked example                                                                                                                                                                                   | Your turn                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Worked example<br>$f(x) = 6 + 3 x - 2 , x \in \mathbb{R}$<br>State the range of values of k for which $f(x) = k$ has:<br>a) no solutions<br>b) exactly one solution<br>c) two distinct solutions | Your turn $h(x) = 6 - 2 x + 3 , x \in \mathbb{R}$ State the range of values of k for which $f(x) = k$ has:a) no solutionsb) exactly one solutionc) two distinct solutionsa) $k > 6$ b) $k = 6$ c) $k < 6$ |
|                                                                                                                                                                                                  | -5                                                                                                                                                                                                        |
|                                                                                                                                                                                                  |                                                                                                                                                                                                           |
| Graphs used with permission from I                                                                                                                                                               | ESMOS: <u>https://www.desmos.com/</u>                                                                                                                                                                     |