1.3) Momentum as a vector

Your turn

A particle of mass 0.4 kg is moving with velocity $(5 \mathbf{i}-10 \mathbf{j}) \mathrm{ms}^{-1}$ when it receives an impulse $(2 \mathbf{i}-3 \mathbf{i}) \mathrm{Ns}$. Find the new velocity of the particle.

A particle of mass 0.2 kg is moving with velocity $(10 \mathbf{i}-5 \mathbf{j}) \mathrm{ms}^{-1}$ when it receives an impulse $(3 \mathbf{i}-2 \mathbf{j}) \mathrm{Ns}$. Find the new velocity of the particle.

$$
(25 \boldsymbol{i}-15 \boldsymbol{j}) m s^{-1}
$$

Your turn

An ice hockey puck of mass 0.34 kg receives an impulse Q Ns .
Immediately before the impulse the velocity of the puck is $(5 \mathbf{i}+10 \mathbf{j}) m s^{-1}$ and immediately afterwards its velocity is $(7 \mathbf{i}-15 \mathbf{j}) m s^{-1}$. Find the magnitude of \mathbf{Q} and the angle between \mathbf{Q} and \mathbf{i}.

An ice hockey puck of mass 0.17 kg receives an impulse \mathbf{Q} Ns .
Immediately before the impulse the velocity of the puck is $(10 \mathbf{i}+5 \mathbf{j}) \mathrm{ms}^{-1}$ and immediately afterwards its velocity is $(15 \mathbf{i}-7 \mathbf{j}) \mathrm{ms}^{-1}$. Find the magnitude of \mathbf{Q} and the angle between \mathbf{Q} and \mathbf{i}.
$|\boldsymbol{Q}|=2.21$
Angle between \boldsymbol{Q} and $\boldsymbol{i}=67.4^{\circ}(1 \mathrm{dp})$

A squash ball of mass 0.05 kg is moving with velocity $(44 \boldsymbol{i}+74 \boldsymbol{j}) \mathrm{ms}^{-1}$ when it hits a wall. It rebounds with velocity $(20 \boldsymbol{i}-22 \boldsymbol{j}) m s^{-1}$. Find the impulse exerted by the wall on the squash ball.

A squash ball of mass 0.025 kg is moving with velocity $(22 \boldsymbol{i}+37 \boldsymbol{j}) \mathrm{ms}^{-1}$ when it hits a wall.
It rebounds with velocity $(10 \boldsymbol{i}-11 \boldsymbol{j}) m s^{-1}$. Find the impulse exerted by the wall on the squash ball.

$$
(-0.3 \boldsymbol{i}-1.2 \boldsymbol{j}) N S
$$

Your turn

A particle of mass 0.3 kg is moving with velocity $(10 \boldsymbol{i}-20 \boldsymbol{j}) \mathrm{ms}^{-1}$ when it collides with a particle of mass 0.5 kg moving with velocity $(8 \boldsymbol{i}-16 \boldsymbol{j}) \mathrm{ms}^{-1}$.
The two particles coalesce and move as one particle of mass 0.8 kg .
Find the velocity of the combined particle.

A particle of mass 0.15 kg is moving with velocity $(20 \boldsymbol{i}-10 \boldsymbol{j}) \mathrm{ms}^{-1}$ when it collides with a particle of mass 0.25 kg moving with velocity $(16 \boldsymbol{i}-8 \boldsymbol{j}) \mathrm{ms}^{-1}$.
The two particles coalesce and move as one particle of mass 0.4 kg .
Find the velocity of the combined particle.

$$
(17.5 \boldsymbol{i}-8.75 \boldsymbol{j}) m s^{-1}
$$

