1B Conservation of Momentum

1. A particle of mass 2 kg is moving with speed $3 \mathrm{~ms}^{-1}$ on a smooth horizontal plane. Particle Q of mass 3 kg is at rest on the plane. Particle P collides with Q and after the collision Q moves away with a speed of $2^{1} / 3 \mathrm{~ms}^{-1}$. Find:
a) The speed and direction of the motion of P after the collision
b) The magnitude of the impulse received by P and by Q in the collision
2. Two particles, P and Q of mass 2 kg and 4 kg respectively are moving towards each other along the same straight line on a smooth horizontal plane. The particles collide. Before the collision, the speeds of P and Q are $3 \mathrm{~ms}^{-1}$ and $2 \mathrm{~ms}^{-1}$. Given that the magnitude of the impulse due to the collision is 7 Ns , find:
a) The speed and direction of P after the collision
b) The speed and direction of Q after the collision
3. Two particles, A and B, of masses 8 kg and 2 kg respectively, are connected by a light inextensible string. The particles are at rest on a smooth horizontal plane with the string slack. Particle A is projected directly away from B with speed $4 \mathrm{~ms}^{-1}$.
a) Find the speed of the particles when the string goes taut
b) Find the magnitude of the impulse transmitted through the string when it goes taut
