1.2) Conservation of momentum

Calculate the value of the unknown in the following isolated systems. All velocities are marked in ms^{-1} and all masses in kg .

Calculate the value of the unknown in the following isolated systems. All velocities are marked in ms^{-1} and all masses in kg .

Your turn

Calculate the value of the unknown in the following isolated systems. All velocities are marked in ms^{-1} and all masses in kg .

Calculate the value of the unknown in the following isolated systems. All velocities are marked in ms^{-1} and all masses in kg .

Calculate the value of the unknown in the following isolated systems. All velocities are marked in ms^{-1} and all masses in kg .

Calculate the value of the unknown in the following isolated systems. All velocities are marked in ms^{-1} and all masses in kg .

Your turn

Calculate the value of the unknown in the following isolated systems. All velocities are marked in ms^{-1} and all masses in kg .

Calculate the value of the unknown in the following isolated systems. All velocities are marked in ms^{-1} and all masses in kg .

Worked example

Your turn

A particle P of mass 4 kg is moving with speed $6 \mathrm{~ms}^{-1}$ on a smooth horizontal plane. Particle Q of mass 6 kg is at rest on the plane. Particle P collides with particle Q and after the collision Q moves with speed $\frac{14}{3} m s^{-1}$. Find:
a) The speed and direction of motion of P after the collision
b) The magnitude of the impulse received by P in the collision

A particle P of mass 2 kg is moving with speed $3 \mathrm{~ms}^{-1}$ on a smooth horizontal plane.
Particle Q of mass 3 kg is at rest on the plane.
Particle P collides with particle Q and after the collision Q moves with speed $\frac{7}{3} m s^{-1}$. Find:
a) The speed and direction of motion of P after the collision
b) The magnitude of the impulse received by P in the collision
a) $0.5 \mathrm{~ms}^{-1}$; direction of motion is reversed.
b) 7 Ns

Worked example

Your turn

Two particles A and B of masses 2 kg and 4 kg respectively are moving towards each other in opposite directions along the same straight line on a smooth horizontal surface.
The particles collide.
Before the collision the speeds of A and B are $3 \mathrm{~ms}^{-1}$ and $2 \mathrm{~ms}^{-1}$ respectively.
After the collision the direction of motion of A is reversed and its speed is $2 \mathrm{~ms}^{-1}$. Find:
a) The speed and direction of B after the collision
b) The magnitude of the impulse given by A to B in the collision

Two particles A and B of masses 2 kg and 4 kg respectively are moving towards each other in opposite directions along the same straight line on a smooth horizontal surface.
The particles collide.
Before the collision the speeds of A and B are $3 \mathrm{~ms}^{-1}$ and $2 \mathrm{~ms}^{-1}$ respectively.
After the collision the direction of motion of A is reversed and its speed is $2 \mathrm{~ms}^{-1}$. Find:
a) The speed and direction of B after the collision
b) The magnitude of the impulse given by A to B in the collision
a) $0.5 \mathrm{~ms}^{-1}$; direction of motion is reversed.
b) 10 Ns

Worked example

Your turn

Two particles P and Q , of masses 8 kg and 4 kg respectively, are connected by a light inextensible string.
The particles are at rest on a smooth horizontal plane with the string slack. Particle P is projected directly away from Q with speed $2 \mathrm{~ms}^{-1}$.
a) Find the common speed of the particles after the string goes taut.
b) Find the magnitude of the impulse transmitted through the string when it goes taught.

Two particles P and Q , of masses 8 kg and 2 kg respectively, are connected by a light inextensible string.
The particles are at rest on a smooth horizontal plane with the string slack. Particle P is projected directly away from Q with speed $4 m s^{-1}$.
a) Find the common speed of the particles after the string goes taut.
b) Find the magnitude of the impulse transmitted through the string when it goes taught.
a) $3.2 \mathrm{~ms}^{-1}$
b) 6.4 Ns

Your turn

Two particles A and B of masses 4 kg and 2 kg respectively are moving towards each other in opposite directions along the same straight line on a smooth horizontal surface. The particles collide.
Before the collision the speeds of A and B are $6 \mathrm{~ms}^{-1}$ and $4 \mathrm{~ms}^{-1}$ respectively.
Given that the magnitude of the impulse due to the collision is 14 Ns , find:
a) The velocity of A after the collision
b) The velocity of B after the collision

Two particles A and B of masses 2 kg and 4 kg respectively are moving towards each other in opposite directions along the same straight line on a smooth horizontal surface. The particles collide.
Before the collision the speeds of A and B are $3 \mathrm{~ms}^{-1}$ and $2 \mathrm{~ms}^{-1}$ respectively.
Given that the magnitude of the impulse due to the collision is 7 Ns , find:
a) The velocity of A after the collision
b) The velocity of B after the collision
a) $0.5 \mathrm{~ms}^{-1}$; direction of motion is reversed
b) $0.25 \mathrm{~ms}^{-1}$; direction of motion is unchanged.

Your turn

A truck P of mass $4 M$ is moving with speed U on smooth straight horizontal rails. It collides directly with another truck Q of mass $6 M$ which is moving with speed $2 U$ in the opposite direction on the same rails. The trucks join so that immediately after the collision they move together. By modelling the trucks as particles, find:
a) The speed of the trucks immediately after the collision
b) The magnitude of the impulse exerted on P by Q in the collision

A truck P of mass $2 M$ is moving with speed U on smooth straight horizontal rails. It collides directly with another truck Q of mass $3 M$ which is moving with speed $4 U$ in the opposite direction on the same rails. The trucks join so that immediately after the collision they move together. By modelling the trucks as particles, find:
a) The speed of the trucks immediately after the collision
b) The magnitude of the impulse exerted on P by Q in the collision
a) $2 U$
b) 6 MU

