1.1) Proof by contradiction

Your turn

Prove by deduction that $n^{2}-6 n+10$ is positive for all values of n

Prove by deduction that $n^{2}-8 n+17$ is positive for all values of n

Proof

Prove by exhaustion that $n^{2}-10<0$ for $-3<n \leq 3$ where n is an integer

Prove by exhaustion that $n^{2}-15<0$ for
$-4<n \leq 4$ where n is an integer
Proof

Your turn

Find a counter example to disprove the statement that $n^{2}-n+41$ is always a prime number.

Find a counter example to disprove the statement that if p is an odd prime, then $p+2$ is also a prime

$$
p=7,13,19,23, \ldots
$$

Your turn

Prove by contradiction that there is no greatest even integer.

Prove by contradiction that there is no greatest odd integer.

Proof

Your turn

Prove by contradiction that if n^{2} is odd, then n must be odd

Prove by contradiction that if n^{2} is even, then n must be even

Proof

Your turn

Prove by contradiction that $\sqrt[3]{2}$ is an irrational number.

Prove by contradiction that $\sqrt{2}$ is an irrational number.

Proof

Your turn

Prove by contradiction that there are no integer solutions to the equation $x^{2}-y^{2}=6$

Prove by contradiction that there are no integer solutions to the equation $x^{2}-y^{2}=2$

Proof

Prove by contradiction that there exist no integers for which $20 a+14 b=3$

Prove by contradiction that there exist no integers for which $21 a+14 b=1$

Proof

Your turn

Prove by contradiction that there exist no rational solutions to the equation $x^{2}-3=0$

Prove by contradiction that there exist no rational solutions to the equation $x^{2}-2=0$ at least one of a and b is an irrational number

Proof

Your turn

Prove that if $a-b$ is an irrational number then at least one of a and b is an irrational number

Prove that if $a+b$ is an irrational number then at least one of a and b is an irrational number

Proof

