1.1) Momentum in one direction

Worked example
Momentum = Mass x Velocity

Mass	Velocity	Momentum
6 kg	$5 \mathrm{~m} / \mathrm{s}$	
	$13 \mathrm{~ms}^{-1}$	$65 \mathrm{kgms}^{-1}$
523 kg		0 Ns
3 kg	$4 \mathrm{i}+7 \mathrm{j} \mathrm{ms}^{-1}$	

Your turn

Momentum = Mass x Velocity

Mass	Velocity	Momentum
523 kg	$0 \mathrm{~ms}^{-1}$	0 Ns
0.2 kg	$7 \mathrm{i}+7 \mathrm{j} \mathrm{ms}^{-1}$	$1.4 \mathrm{i}+1.4 \mathrm{jgms}^{-1}$
0.002 tonnes	$3 \mathrm{i}+9 \mathrm{j} \mathrm{ms}^{-1}$	$6 \mathrm{i}+18 \mathrm{j} \mathrm{Ns}$
600 g	$36 \mathrm{~km} / \mathrm{h}$	6 Ns

Your turn

Calculate the impulse exerted on the object:

- A force of 30 N exerted on an object for 0.5 seconds

Calculate the impulse exerted on the object:

- A rocket of mass 100 kg travelling at $2000 \mathrm{~ms}^{-1}$ hits the ground and stops.

200000 Ns

- A ball of mass 3 kg was travelling at $10 \mathrm{~ms}^{-1}$, is hit and returns in the opposite direction at a speed of $6 \mathrm{~ms}^{-1}$

48 Ns

- The momentum before impact is $6 \mathbf{i}-5 \mathbf{j} \mathrm{Ns}$ and the momentum after impact is $-10 \mathbf{i}+5 \mathbf{j}$ Ns

$$
-16 \boldsymbol{i}+10 \boldsymbol{j} N s
$$

A ball of mass 0.4 kg hits a vertical wall at right angles with a speed of $7 \mathrm{~ms}^{-1}$. The ball rebounds with speed $5 \mathrm{~ms}^{-1}$. Find the magnitude of the impulse exerted on the wall by the ball.

A ball of mass 0.2 kg hits a vertical wall at right angles with a speed of $3.5 \mathrm{~ms}^{-1}$. The ball rebounds with speed $2.5 \mathrm{~ms}^{-1}$.
Find the magnitude of the impulse exerted on the wall by the ball.
1.2 Ns

Your turn

Two particles A and B, of mass 0.6 kg and m kg respectively, are moving in opposite directions along the same straight horizontal line so that the particles collide directly. Immediately before the collision, the speeds of A and B are $4 \mathrm{~ms}^{-1}$ and $2 \mathrm{~ms}^{-1}$ respectively.
In the collision the direction of motion of each particle is reversed and, immediately after the collision, the speed of each particle is $2 \mathrm{~ms}^{-1}$.
Find the magnitude of the impulse exerted by B on A in the collision.

Two particles A and B, of mass 0.3 kg and m kg respectively, are moving in opposite directions along the same straight horizontal line so that the particles collide directly. Immediately before the collision, the speeds of A and B are $8 \mathrm{~ms}^{-1}$ and $4 \mathrm{~ms}^{-1}$ respectively.
In the collision the direction of motion of each particle is reversed and, immediately after the collision, the speed of each particle is $2 \mathrm{~ms}^{-1}$.
Find the magnitude of the impulse exerted by B on A in the collision.

