1.1) Exponential models

Wor	Your turn											
The table shows some data collected on the temperature, in °C, of a colony of bacteria (t) and its growth rate (g).						The table shows some data collected on the temperature, in °C, of a colony of bacteria (t) and its growth rate (g) .						
Temperature, t 3 (°C)	5	6	8	9	11	Temperature, t (°C)	3	5	6	8	9	11
Growth rate, <i>g</i> 1.40	1.94	1.97	2.85	3.2	4.64	Growth rate, g	1.04	1.49	1.79	2.58	3.1	4.46
Growth rate, g1.401.941.972.853.24.64The data are coded using the changes of variable $x = t$ and $y = \log g$. The regression line of y on x is found to be $y = -0.0536 + 0.0637x$.a) Find the initial growth rateb) Given that the data can be modelled by an equation ofthe form $g = kb^t$ where k and b are constants, find thevalues of k and b .						The data are coded using the changes of variable $x = t$ and $y = \log g$. The regression line of y on x is found to be y = -0.2215 + 0.0792x. a) Find the initial growth rate b) Given that the data can be modelled by an equation of the form $g = kb^t$ where k and b are constants, find the values of k and b . a) 0.6 b) $k = 0.6, b = 1.20$ (3 sf)						= <i>t</i> to be ion of ind the

Worked example	Your turn
A rabbit population, <i>P</i> , is modelled with respect to time in years, <i>t</i> . An exponential model is proposed: $P = kb^t$ The data is coded using $x = t$ and $y = \log P$. The regression line of <i>y</i> on <i>x</i> is found to be $y = 3 + 0.2x$. Determine the values of <i>k</i> and <i>b</i> .	A rabbit population, <i>P</i> , is modelled with respect to time in years, <i>t</i> . An exponential model is proposed: $P = kb^t$ The data is coded using $x = t$ and $y = \log P$. The regression line of <i>y</i> on <i>x</i> is found to be $y = 2 + 0.3x$. Determine the values of <i>k</i> and <i>b</i> . k = 100, b = 2.00 (3 sf)