14.8) Logarithms and non-linear data

Worked example	Your turn						
Use logarithms to convert the non-linear relationship into a linear form and sketch the resulting straight line. $y = ax^n$	Use logarithms to convert the non-linear relationship into a linear form and sketch the resulting straight line. $y = ab^{x}$						
	$\log y = (\log b) x + \log a$						
	$\log y$ $\log a$ x						

Worked example	Your turn						
The graph represents the growth of a population of bacteria, <i>P</i> , over <i>t</i> hours. The graph has a gradient of 0.3 and meets the vertical axis at (0,4). A scientist suggest that this growth can be modelled by the equation $P = ab^t$, where <i>a</i> and <i>b</i> are constants to be found. a. Write down an equation for the line. b. Find the values of <i>a</i> and <i>b</i> , giving them to 3 sf where necessary. c. Interpret the meaning of the constant <i>a</i> in this model. log(P)	The graph represents the growth of a population of bacteria, <i>P</i> , over <i>t</i> hours. The graph has a gradient of 0.6 and meets the vertical axis at (0,2). A scientist suggest that this growth can be modelled by the equation $P = ab^t$, where <i>a</i> and <i>b</i> are constants to be found. a. Write down an equation for the line. b. Find the values of <i>a</i> and <i>b</i> , giving them to 3 sf where necessary. c. Interpret the meaning of the constant <i>a</i> in this model. log(P)						
	a) $\log P = 0.6t + 2$ b) $a = 100$, $b = 3.98$ (3 sf) c) The initial size of the bacteria population was 100						

Worked example					Your turn								
The table below gives the rank (by size) and population of a country's largest cities and districts (the capital city is number 1 but has been excluded as an outlier).				The table below gives the rank (by size) and population of the UK's largest cities and districts in the past (London is number 1 but has been excluded as an outlier).									
City	А	В	C	D	E	City		Birmingha m	ı Le	eeds	Glasgow	Sheffield	Bradford
Rank, R	2	3	4	5	6	Rank, R		2		3	4	5	6
Population	2 000 000	1 400 000	1 200 000	1 000 000	900 000	Population		1 000 00	D 73	30 000	620 000	530 000	480 000
 The relationship between the rank and population can be modelled by the formula: P = aRⁿ where a and n are constants. a) Draw a table giving values of log R and log P to 2dp. b) Plot a graph of log R against log P using the values from your table and draw the line of best fit. c) Use your graph to estimate the values of a and n to two significant figures. 					 The relationship between the rank and population can be modelled by the formula: P = aRⁿ where a and n are constants. a) Draw a table giving values of log R and log P to 2dp. b) Plot a graph of log R against log P using the values from your table and draw the line of best fit. c) Use your graph to estimate the values of a and n to two significant figures. 								
						a)	log	<i>R</i> 0.	30	0.48	0.60	0.70	0.78
							log	7 P 6		5.86	5.79	5.72	5.68
						b) c) a =		0.2 0.4 0.6 0000, n		• log <i>R</i> 9.67 (2	sf)		

Worked example				Your turn						
A population is increasing exponentially according to the model $P = ab^t$, where a, b are constants to be found.				A population is increasing exponentially according to the model $P = ab^t$, where a, b are constants to be found.						
The population is recorded as follows:				The population is recorded as follows:						
Years t after 2016	1.4	2.6	4.4	Years <i>t</i> after 2015		15	0.7	1.3	2.2	
Population P	4706	7346	14324	Population P			2353	3673	7162	
 b) A line of best table, and it h point above (Determine the c) Hence, determine 	ble giving values of t and $\log P$ (to 3dp). est fit is drawn for the data in your new it happens to go through the first data we (where $t = 1.4$) and last (where $t = 4.4$). The equation of this line of best fit. The equation of this line of best fit. The population in 2020		c) d) a) b) lo c) a	A line of b table, and point abo Determine	est fit is l it happe ve (wher e the equ etermine the popu 0.7 3.372 322 <i>t</i> +	drawn for ens to go to re $t = 0.7$ Juation of to the value lation in 2 1.3 3.565 3.147	the data chrough th and last (this line of of <i>a</i> and 2020 2.2 3.855	g P (to 3dp). in your new he first data (where $t = 2.2$). best fit b in the model.		