Your turn

Use logarithms to convert the non-linear relationship into a linear form and sketch the resulting straight line.

$$
y=a x^{n}
$$

Use logarithms to convert the non-linear relationship into a linear form and sketch the resulting straight line.

$$
\begin{gathered}
y=a b^{x} \\
\log y=(\log b) x+\log a
\end{gathered}
$$

Your turn

The graph represents the growth of a population of bacteria, P, over t hours.
The graph has a gradient of 0.3 and meets the vertical axis at $(0,4)$. A scientist suggest that this growth can be modelled by the equation $P=a b^{t}$, where a and b are constants to be found.
a. Write down an equation for the line.
b. Find the values of a and b, giving them to 3 sf where necessary.
c. Interpret the meaning of the constant a in this model.

The graph represents the growth of a population of bacteria, P, over t hours.
The graph has a gradient of 0.6 and meets the vertical axis at $(0,2)$. A scientist suggest that this growth can be modelled by the equation $P=a b^{t}$, where a and b are constants to be found.
a. Write down an equation for the line.
b. Find the values of a and b, giving them to 3 sf where necessary.
c. Interpret the meaning of the constant a in this model.

a) $\log P=0.6 t+2$
b) $a=100, b=3.98$ (3 sf)
c) The initial size of the bacteria population was 100

Your turn

The table below gives the rank (by size) and population of a country's largest cities and districts (the capital city is number 1 but has been excluded as an outlier).

City	A	B	C	D	E
Rank, \boldsymbol{R}	2	3	4	5	6
Population	2000000	1400 000	1200000	1000 000	900000

The relationship between the rank and population can be modelled by the formula:
$P=a R^{n}$ where a and n are constants.
a) Draw a table giving values of $\log R$ and $\log P$ to 2 dp .
b) Plot a graph of $\log R$ against $\log P$ using the values from your table and draw the line of best fit.
c) Use your graph to estimate the values of a and n to two significant figures.

The table below gives the rank (by size) and population of the UK's largest cities and districts in the past (London is number 1 but has been excluded as an outlier).

City	Birmingha \mathbf{m}	Leeds	Glasgow	Sheffield	Bradford
Rank, \boldsymbol{R}	2	3	4	5	6
Population	1000000	730000	620000	530000	480000

The relationship between the rank and population can be modelled by the formula:
$P=a R^{n}$ where a and n are constants.
a) Draw a table giving values of $\log R$ and $\log P$ to 2 dp .
b) Plot a graph of $\log R$ against $\log P$ using the values from your table and draw the line of best fit.
c) Use your graph to estimate the values of a and n to two significant figures.
a)

$\log R$	0.30	0.48	0.60	0.70	0.78
$\log P$	6	5.86	5.79	5.72	5.68

b)

c) $a=1600000, n=-0.67(2 \mathrm{sf})$

Your turn

A population is increasing exponentially according to the model $P=a b^{t}$, where a, b are constants to be found.
The population is recorded as follows:

Years \boldsymbol{t} after 2016	1.4	2.6	4.4
Population \boldsymbol{P}	4706	7346	14324

a) Draw a table giving values of t and $\log P$ (to 3 dp).
b) A line of best fit is drawn for the data in your new table, and it happens to go through the first data point above (where $t=1.4$) and last (where $t=4.4$). Determine the equation of this line of best fit.
c) Hence, determine the values of a and b in the model.
d) Estimate the population in 2020

A population is increasing exponentially according to the model $P=a b^{t}$, where a, b are constants to be found.

The population is recorded as follows:

Years \boldsymbol{t} after 2015	0.7	1.3	2.2
Population \boldsymbol{P}	2353	3673	7162

a) Draw a table giving values of t and $\log P$ (to 3 dp).
b) A line of best fit is drawn for the data in your new table, and it happens to go through the first data point above (where $t=0.7$) and last (where $t=2.2$). Determine the equation of this line of best fit
c) Hence, determine the values of a and b in the model.
d) Estimate the population in 2020
a)

\boldsymbol{t}	0.7	1.3	2.2
$\log \boldsymbol{P}$	3.372	3.565	3.855

b) $\log P=0.322 t+3.147$
c) $a=1403, b=2.099$ (4 sf)
d) 57164

