14.4) Logarithms

Write each statement as a logarithm:
$2^{3}=8$
$7^{2}=49$

$$
64^{\frac{1}{3}}=4
$$

Write each statement as a logarithm:

$$
\begin{gathered}
3^{2}=9 \\
\log _{3} 9=2 \\
2^{7}=128 \\
\log _{2} 128=7 \\
64^{\frac{1}{2}}=8 \\
\log _{64} 8=\frac{1}{2}
\end{gathered}
$$

Write each statement using a power:
$\log _{4} 64=3$

$$
\log _{3} \frac{1}{9}=-2
$$

Write each statement using a power:

$$
\log _{3} 81=4
$$

$$
3^{4}=81
$$

$$
\log _{2} \frac{1}{8}=-3
$$

$$
2^{-3}=\frac{1}{8}
$$

Without a calculator, find the value of: $\log _{5} 125$

$$
\log _{5}\left(\frac{1}{625}\right)
$$

$\log _{5} 1$

Without a calculator, find the value of:
$\log _{4} 16$
2
$\log _{4} 1$
0
$\log _{4} 4$
1
$\log _{4}\left(\frac{1}{64}\right)$
-3

Without a calculator, find the value of: $\log _{5} 125$

Without a calculator, find the value of:
$\log _{4} 16$
2

$\log _{4} 1$
0

$$
\begin{gathered}
\log _{4} 4 \\
1
\end{gathered}
$$

$\log _{4}\left(\frac{1}{64}\right)$
-3
$\log _{4}(-3)$
No value

Without a calculator, find the value of:
$\log _{5} 5$
$\ln e^{2}$
$\log 1000$

Without a calculator, find the value of:
$\log _{3} 3$
1
$\ln e$
1
$\log 100$
2

Worked example	Your turn
Use your calculator to find the value of: $\log _{5} 40$	Use your calculator to find the value of: $\log _{3} 40$ $3.358(3 \mathrm{dp})$
$\qquad$$\ln 8$ $\ln 16$	$2.079(3 \mathrm{dp})$ $\log 75$ $1.875(3 \mathrm{dp})$

Your turn

Using a table of values sketch the graph of $y=\log _{4} x$

Using a table of values sketch the graph of $y=\log _{2} x$

