14) Exponentials and logarithms

14.1) Exponential functions
14.2) $y=e^{x}$
14.3) Exponential modelling
14.4) Logarithms
14.5) Laws of logarithms
14.6) Solving equations using logarithms
14.7) Working with natural logarithms
14.8) Logarithms and non-linear data

Your turn

On the same axes, sketch $y=4^{x}, y=$ 5^{x} and $y=3.5^{x}$

On the same axes, sketch $y=2^{x}, y=$ 3^{x} and $y=1.5^{x}$

Your turn

On the same axes, sketch $y=3^{x}$ and $y=\left(\frac{1}{3}\right)^{x}$

On the same axes, sketch $y=2^{x}$ and $y=\left(\frac{1}{2}\right)^{x}$

Your turn

Sketch $y=3^{x-2}$
Sketch $y=2^{x+3}$

The graph of $y=k a^{x}$ passes through the points $\left(4, \frac{16}{3}\right)$ and $\left(0, \frac{1}{3}\right)$ Find the values of the constants k and a

The graph of $y=p q^{x}$ passes through the points $(2,4.5)$ and $\left(5, \frac{243}{2}\right)$
Find the values of the constants p and q

$$
p=\frac{1}{2}, q=3
$$

Differentiate with respect to x :
$e^{2 x}$
$e^{-3 x}$
$4 e^{5 x}$
$6 e^{\frac{1}{3} x}$

Differentiate with respect to x :

$$
\begin{gathered}
8 e^{-\frac{1}{4} x} \\
-2 e^{-\frac{1}{4} x}
\end{gathered}
$$

Your turn

Sketch:

$$
y=e^{3 x}
$$

$$
y=10 e^{-x}
$$

Sketch:

$$
y=5 e^{-x}
$$

Sketch:

$$
y=3+4 e^{\frac{1}{2} x}
$$

Sketch:

$$
y=2+e^{\frac{1}{3} x}
$$

$$
y=e^{-3 x}-2
$$

Sketch:

$$
y=e^{-2 x}-1
$$

Your turn

Suppose the population P of a village is modelled by $P=500 e^{2 t}$ where t is the numbers of years since February 2009. Find:
a) The initial population
b) The initial rate of growth
c) The population in February 2014

Suppose the population P of a village is modelled by $P=100 e^{3 t}$ where t is the numbers of years since January 2010. Find:
a) The initial population
b) The initial rate of growth
c) The population in January 2014
a) 100
b) $\frac{d P}{d t}=300$
c) 16275479

Worked example

Your turn

The density of a pesticide in a given section of field, P $\mathrm{mg} / \mathrm{m}^{2}$, can be modelled by the equation $P=80 e^{-0.003 t}$ where t is the time in days since the pesticide was first applied.
a. Use this model to estimate the density of pesticide after 30 days.
b. Interpret the meaning of the value 80 in this model.
c. Show that $\frac{d P}{d t}=k P$, where k is a constant, and state the value of k.
d. Interpret the significance of the sign of your answer in part (c).
e. Sketch the graph of P against t.

The density of a pesticide in a given section of field, P $\mathrm{mg} / \mathrm{m}^{2}$, can be modelled by the equation $P=160 e^{-0.006 t}$ where t is the time in days since the pesticide was first applied.
a. Use this model to estimate the density of pesticide after 15 days.
b. Interpret the meaning of the value 160 in this model.
c. Show that $\frac{d P}{d t}=k P$, where k is a constant, and state the value of k.
d. Interpret the significance of the sign of your answer in part (c).
e. Sketch the graph of P against t.
a) $145.2 \mathrm{mg} / \mathrm{m}^{2}$
b) 160 is the initial density of pesticide in the field.
c) $\frac{d P}{d t}=-0.96 e^{-0.006 t} ; k=-0.96$
d) The rate is negative, thus the density of pesticide is decreasing.
e)

Write each statement as a logarithm:
$2^{3}=8$
$7^{2}=49$

$$
64^{\frac{1}{3}}=4
$$

Write each statement as a logarithm:

$$
\begin{gathered}
3^{2}=9 \\
\log _{3} 9=2 \\
2^{7}=128 \\
\log _{2} 128=7 \\
64^{\frac{1}{2}}=8 \\
\log _{64} 8=\frac{1}{2}
\end{gathered}
$$

Write each statement using a power:
$\log _{4} 64=3$

$$
\log _{3} \frac{1}{9}=-2
$$

Write each statement using a power:

$$
\log _{3} 81=4
$$

$$
3^{4}=81
$$

$$
\log _{2} \frac{1}{8}=-3
$$

$$
2^{-3}=\frac{1}{8}
$$

Without a calculator, find the value of: $\log _{5} 125$

$$
\log _{5}\left(\frac{1}{625}\right)
$$

$\log _{5} 1$

Without a calculator, find the value of:
$\log _{4} 16$
2
$\log _{4} 1$
0
$\log _{4} 4$
1
$\log _{4}\left(\frac{1}{64}\right)$
-3

Without a calculator, find the value of: $\log _{5} 125$

Without a calculator, find the value of:
$\log _{4} 16$
2

$\log _{4} 1$
0

$$
\begin{gathered}
\log _{4} 4 \\
1
\end{gathered}
$$

$\log _{4}\left(\frac{1}{64}\right)$
-3
$\log _{4}(-3)$
No value

Without a calculator, find the value of:
$\log _{5} 5$
$\ln e^{2}$
$\log 1000$

Without a calculator, find the value of:
$\log _{3} 3$
1
$\ln e$
1
$\log 100$
2

Worked example	Your turn
Use your calculator to find the value of: $\log _{5} 40$	Use your calculator to find the value of: $\log _{3} 40$ $3.358(3 \mathrm{dp})$
$\qquad$$\ln 8$ $\ln 16$	$2.079(3 \mathrm{dp})$ $\log 75$ $1.875(3 \mathrm{dp})$

Your turn

Using a table of values sketch the graph of $y=\log _{4} x$

Using a table of values sketch the graph of $y=\log _{2} x$

Your turn

Write as a single logarithm:
a) $\log _{2} 9+\log _{2} 6$
b) $\log _{3} 48-\log _{3} 6$
c) $3 \log _{4} 2+2 \log _{4} 5$
d) $\log _{6} 7-3 \log _{10}\left(\frac{1}{4}\right)$

Write as a single logarithm:
a) $\log _{3} 6+\log _{3} 7$
b) $\log _{2} 15-\log _{2} 3$
c) $2 \log _{5} 3+3 \log _{5} 2$
d) $\log _{10} 3-4 \log _{10}\left(\frac{1}{2}\right)$
a) $\log _{3} 42$
b) $\log _{2} 5$
c) $\log ^{5} 72$
d) $\log _{10} 48$

Write as a single logarithm:
a) $\log _{a}\left(x^{4} y^{5} z\right)$
b) $\log _{a}\left(\frac{x^{3}}{y^{2}}\right)$
c) $\log _{a}\left(\frac{x^{3} \sqrt{y}}{z^{2}}\right)$
d) $\log _{a}\left(\frac{x^{2}}{a^{5}}\right)$

Write as a single logarithm:
a) $\log _{a}\left(x^{2} y z^{3}\right)$
b) $\log _{a}\left(\frac{x}{y^{3}}\right)$
c) $\log _{a}\left(\frac{x \sqrt{y}}{z}\right)$
d) $\log _{a}\left(\frac{x}{a^{4}}\right)$
a) $2 \log _{a} x+\log _{a} y+3 \log _{a} z$
b) $\log _{a} x-3 \log _{a} y$
c) $\log _{a} x+\frac{1}{2} \log _{a}(y)-\log _{a} z$
d) $\log _{a} x-4$

Your turn

Solve the equation:

$$
\log _{10} 2+4 \log _{10} x=2.209515015
$$

Solve the equation:

$$
\begin{gathered}
\log _{10} 4+2 \log _{10} x=2 \\
x=5
\end{gathered}
$$

Your turn

Solve the equation:

$$
\log _{2}(x+5)-\log _{2}(x-11)=3
$$

Solve the equation:

$$
\begin{gathered}
\log _{3}(x+11)-\log _{3}(x-5)=2 \\
x=7
\end{gathered}
$$

Your turn

Solve the equation:
$2 \log _{4}(x+3)-\log _{4} x=2$
Solve the equation:

$$
\begin{gathered}
2 \log _{2}(x+15)-\log _{2} x=6 \\
x=25, x=9
\end{gathered}
$$

Your turn

Solve the equation:

$$
2^{x}=30
$$

$$
5^{x}=0.1
$$

Solve the equation:

$$
\begin{gathered}
3^{x}=20 \\
x=2.727(3 \mathrm{dp})
\end{gathered}
$$

Your turn

Solve the equation:

$$
4^{5 x-1}=71
$$

$$
3^{1-4 x}=17
$$

Solve the equation:

$$
\begin{gathered}
5^{4 x-1}=61 \\
x=0.889(3 \mathrm{dp})
\end{gathered}
$$

Your turn

Solve the equation:

$$
2^{x}=3^{x+1}
$$

Solve the equation:

$$
\begin{gathered}
3^{x}=2^{x+1} \\
x=1.7095(4 \mathrm{dp})
\end{gathered}
$$

Your turn

Solve the equation:
$3^{2 x}-9\left(3^{x}\right)+14=0$
Solve the equation:

$$
\begin{gathered}
5^{2 x}-15\left(5^{x}\right)+20=0 \\
x=1.43, x=0.431(3 \mathrm{sf})
\end{gathered}
$$

Your turn

Solve the equation:

$$
3^{x} 2^{x+1}=7
$$

Give your answer in exact form
Solve the equation:

$$
2^{x} 3^{x+1}=5
$$

Give your answer in exact form

$$
x=\frac{\log 5-\log 3}{\log 6}
$$

Your turn

Solve the equation:

$$
2^{x-1}=5^{x+1}
$$

Round your answer to 3 decimal places
Solve the equation:

$$
3^{x+1}=4^{x-1}
$$

Round your answer to 3 decimal places

$$
x=8.638(3 \mathrm{dp})
$$

14.7) Working with natural logarithms Chapter CONTENTS

Your turn

Solve the equation:

$$
e^{x}=2
$$

$$
e^{x}=4
$$

Solve the equation:
$e^{x}=5$

$$
x=\ln 5=1.609(3 \mathrm{dp})
$$

Your turn

Solve the equation:

$$
e^{7 x-2}=3
$$

Give your answer in exact form
Solve the equation:

$$
\begin{gathered}
e^{2 x+3}=7 \\
x=\frac{1}{2} \ln 7-\frac{3}{2}
\end{gathered}
$$

Your turn

Solve the equation:

$$
e^{2 x}+2 e^{x}=15
$$

Solve the equation:

$$
\begin{gathered}
e^{2 x}+5 e^{x}=14 \\
x=\ln 2
\end{gathered}
$$

Solve the equation:

$$
e^{x}-12 e^{-x}=-1
$$

Solve the equation:

$$
\begin{gathered}
e^{x}-2 e^{-x}=1 \\
x=\ln 2
\end{gathered}
$$

Your turn

Solve the equation:

$$
3^{x} e^{x+4}=2
$$

Give your answer as an exact value

Solve the equation:

$$
2^{x} e^{x+1}=3
$$

Give your answer as an exact value

$$
x=\frac{\ln 3-1}{\ln 2+1}
$$

Your turn

Solve the equation:
$\ln x=2$
$\ln x=4$
Solve the equation:

$$
\begin{gathered}
\ln x=5 \\
x=e^{5}=148.413(3 \mathrm{dp})
\end{gathered}
$$

Your turn

Solve the equation:

$$
3 \ln x-7=5
$$

Solve the equation:

$$
\begin{gathered}
2 \ln x+1=5 \\
x=e^{2}=7.389(3 \mathrm{dp})
\end{gathered}
$$

Your turn

Solve the equation:
$\ln (2 x-3)=1$
Solve the equation:
$\ln (3 x+1)=2$

$$
x=\frac{e^{2}-1}{3}
$$

Find the exact coordinates of the points where the graph with equation $y=6+\ln (5-x)$ intersects the axes

Find the exact coordinates of the points where the graph with equation $y=2+\ln (3-x)$ intersects the axes

$$
\left(5-e^{-6}, 0\right) \text { and }(0,2+\ln 3)
$$

Your turn

Use logarithms to convert the non-linear relationship into a linear form and sketch the resulting straight line.

$$
y=a x^{n}
$$

Use logarithms to convert the non-linear relationship into a linear form and sketch the resulting straight line.

$$
\begin{gathered}
y=a b^{x} \\
\log y=(\log b) x+\log a
\end{gathered}
$$

Your turn

The graph represents the growth of a population of bacteria, P, over t hours.
The graph has a gradient of 0.3 and meets the vertical axis at $(0,4)$. A scientist suggest that this growth can be modelled by the equation $P=a b^{t}$, where a and b are constants to be found.
a. Write down an equation for the line.
b. Find the values of a and b, giving them to 3 sf where necessary.
c. Interpret the meaning of the constant a in this model.

The graph represents the growth of a population of bacteria, P, over t hours.
The graph has a gradient of 0.6 and meets the vertical axis at $(0,2)$. A scientist suggest that this growth can be modelled by the equation $P=a b^{t}$, where a and b are constants to be found.
a. Write down an equation for the line.
b. Find the values of a and b, giving them to 3 sf where necessary.
c. Interpret the meaning of the constant a in this model.

a) $\log P=0.6 t+2$
b) $a=100, b=3.98$ (3 sf)
c) The initial size of the bacteria population was 100

Your turn

The table below gives the rank (by size) and population of a country's largest cities and districts (the capital city is number 1 but has been excluded as an outlier).

City	A	B	C	D	E
Rank, \boldsymbol{R}	2	3	4	5	6
Population	2000000	1400 000	1200000	1000 000	900000

The relationship between the rank and population can be modelled by the formula:
$P=a R^{n}$ where a and n are constants.
a) Draw a table giving values of $\log R$ and $\log P$ to 2 dp .
b) Plot a graph of $\log R$ against $\log P$ using the values from your table and draw the line of best fit.
c) Use your graph to estimate the values of a and n to two significant figures.

The table below gives the rank (by size) and population of the UK's largest cities and districts in the past (London is number 1 but has been excluded as an outlier).

City	Birmingha \mathbf{m}	Leeds	Glasgow	Sheffield	Bradford
Rank, \boldsymbol{R}	2	3	4	5	6
Population	1000000	730000	620000	530000	480000

The relationship between the rank and population can be modelled by the formula:
$P=a R^{n}$ where a and n are constants.
a) Draw a table giving values of $\log R$ and $\log P$ to 2 dp .
b) Plot a graph of $\log R$ against $\log P$ using the values from your table and draw the line of best fit.
c) Use your graph to estimate the values of a and n to two significant figures.
a)

$\log R$	0.30	0.48	0.60	0.70	0.78
$\log P$	6	5.86	5.79	5.72	5.68

b)

c) $a=1600000, n=-0.67(2 \mathrm{sf})$

Your turn

A population is increasing exponentially according to the model $P=a b^{t}$, where a, b are constants to be found.
The population is recorded as follows:

Years \boldsymbol{t} after 2016	1.4	2.6	4.4
Population \boldsymbol{P}	4706	7346	14324

a) Draw a table giving values of t and $\log P$ (to 3 dp).
b) A line of best fit is drawn for the data in your new table, and it happens to go through the first data point above (where $t=1.4$) and last (where $t=4.4$). Determine the equation of this line of best fit.
c) Hence, determine the values of a and b in the model.
d) Estimate the population in 2020

A population is increasing exponentially according to the model $P=a b^{t}$, where a, b are constants to be found.

The population is recorded as follows:

Years \boldsymbol{t} after 2015	0.7	1.3	2.2
Population \boldsymbol{P}	2353	3673	7162

a) Draw a table giving values of t and $\log P$ (to 3 dp).
b) A line of best fit is drawn for the data in your new table, and it happens to go through the first data point above (where $t=0.7$) and last (where $t=2.2$). Determine the equation of this line of best fit
c) Hence, determine the values of a and b in the model.
d) Estimate the population in 2020
a)

\boldsymbol{t}	0.7	1.3	2.2
$\log \boldsymbol{P}$	3.372	3.565	3.855

b) $\log P=0.322 t+3.147$
c) $a=1403, b=2.099$ (4 sf)
d) 57164

