13) Integration

13.1) Integrating x^{n}
13.2) Indefinite integrals
13.3) Finding functions
13.4) Definite integrals
13.5) Areas under curves
13.6) Areas under the x-axis
13.7) Areas between curves and lines

Find $f(x)$, given that $f^{\prime}(x)=$ x^{2} x^{3}

Find $f(x)$, given that $f^{\prime}(x)=$ x^{5}

$$
y=\frac{1}{6} x^{6}+c
$$

Find y, given that $\frac{d y}{d x}=$
$3 x^{2}$
$-2 x^{3}$
$5 x^{4}$

Find y, given that $\frac{d y}{d x}=$

$$
\begin{gathered}
-3 x^{5} \\
y=-\frac{1}{2} x^{6}+c
\end{gathered}
$$

Find $f(x)$, given that $f^{\prime}(x)=$
\sqrt{x}

$$
\sqrt[3]{x}
$$

$$
\sqrt[4]{x}
$$

Find $f(x)$, given that $f^{\prime}(x)=$

$$
y=\frac{\sqrt[5]{x}}{6} x^{\frac{6}{5}}+c
$$

Find y, given that $\frac{d y}{d x}=$
$\frac{1}{x^{2}}$

$$
\frac{2}{x^{3}}
$$

Find y, given that $\frac{d y}{d x}=$

$$
\begin{gathered}
\frac{3}{x^{4}} \\
y=-\frac{1}{x^{3}}+c
\end{gathered}
$$

Find $f(x)$, given that $f^{\prime}(x)=$ $\frac{3}{4 x^{2}}$

Find $f(x)$, given that $f^{\prime}(x)=$

$$
\begin{gathered}
\frac{7}{8 x^{4}} \\
y=-\frac{7}{24 x^{3}}+c
\end{gathered}
$$

Your turn

Find y, given that $\frac{d y}{d x}=$
$\frac{2}{3} \sqrt{x}$

$\frac{4}{7} \sqrt[3]{x}$

$$
\frac{5}{6} \sqrt[4]{x}
$$

Find y, given that $\frac{d y}{d x}=$

$$
\begin{aligned}
& \frac{3}{5} \sqrt{x} \\
& y= \frac{2}{5} x^{\frac{3}{2}}+c \\
& y= \frac{2}{5} x \sqrt{x}+c
\end{aligned}
$$

Find $f(x)$, given that $f^{\prime}(x)=$
$\frac{2}{3 \sqrt{x}}$

$$
\begin{aligned}
& \frac{4}{7 \sqrt[3]{x}} \\
& \frac{5}{6 \sqrt[4]{x}}
\end{aligned}
$$

Find $f(x)$, given that $f^{\prime}(x)=$ 3
$\overline{5 \sqrt{x}}$

$$
\begin{aligned}
& y=\frac{6}{5} x^{\frac{1}{2}}+c \\
& y=\frac{6}{5} \sqrt{x}+c
\end{aligned}
$$

Your turn

Find y, given that $\frac{d y}{d x}=$
$\sqrt{36 x^{7}}$
$\sqrt{25} x^{7}$
Find y, given that $\frac{d y}{d x}=$

$$
\begin{gathered}
\quad \sqrt{16 x^{8}} \\
=\frac{4}{5} x^{5}+c
\end{gathered}
$$

$$
\sqrt{9} x^{8}
$$

$$
y=\frac{1}{3} x^{9}+c
$$

Find $f(x)$, given that $f^{\prime}(x)=$

$$
2 x^{-\frac{7}{10}}
$$

Find $f(x)$, given that $f^{\prime}(x)=$

$$
\begin{gathered}
10 x^{-\frac{2}{7}} \\
y=14 x^{\frac{5}{7}}+c
\end{gathered}
$$

Your turn

Find y, given that $\frac{d y}{d x}=$
$39 x^{\frac{5}{8}}$
Find y, given that $\frac{d y}{d x}=$
$33 x^{\frac{5}{6}}$

$$
y=18 x^{\frac{11}{6}}+c
$$

Find $f(x)$, given that $f^{\prime}(x)=$

$$
(3 x-2)^{2}
$$

Find $f(x)$, given that $f^{\prime}(x)=$
$(2 x-3)^{2}$

$$
y=\frac{4}{3} x^{3}-6 x^{2}+9 x+c
$$

Find:

$$
\begin{aligned}
& \int 10 x d x \\
& \int 15 x^{2} d x
\end{aligned}
$$

Find:

$$
\begin{aligned}
& \int 20 x^{3} d x \\
& 5 x^{4}+c
\end{aligned}
$$

Find:

$$
\int\left(x^{-\frac{5}{2}}-3\right) d x
$$

Find:

$$
\begin{aligned}
& \int\left(x^{-\frac{3}{2}}+2\right) d x \\
& -2 x^{-\frac{1}{2}}+2 x+c
\end{aligned}
$$

Find:

$$
\int\left(2 \theta^{6}+3\right) d \theta
$$

Find:

$$
\begin{aligned}
& \int\left(6 t^{2}-1\right) d t \\
& 2 t^{3}-t+c
\end{aligned}
$$

Your turn

Find $\int\left(r x^{4}-5 s\right) d x$ where r and s are constants.

Find $\int\left(p x^{3}+q\right) d x$ where p and q are constants.

Worked example

Your turn

Find:

$$
\int\left(\frac{3}{x^{2}}-2 \sqrt[3]{x}\right) d x
$$

Find:

$$
\begin{aligned}
& \int\left(\frac{2}{x^{3}}-3 \sqrt{x}\right) d x \\
& -\frac{1}{x^{2}}-2 \sqrt{x^{3}}+c
\end{aligned}
$$

Your turn

Find:

$$
\int\left(x^{2}\left(x^{3}-\frac{4}{x^{2}}\right)\right) d x
$$

Find:

$$
\begin{gathered}
\int\left(x\left(x^{2}+\frac{2}{x}\right)\right) d x \\
\frac{1}{4} x^{4}+2 x+c
\end{gathered}
$$

Find:

$$
\int\left((3 x)^{5}-\frac{\sqrt[3]{x}-2}{x^{4}}\right) d x
$$

Find:

$$
\begin{gathered}
\int\left((2 x)^{2}+\frac{\sqrt{x}+5}{x^{2}}\right) d x \\
\frac{4}{3} x^{3}-\frac{2}{\sqrt{x}}-\frac{5}{x}+c
\end{gathered}
$$

Your turn

$$
\int\left(\frac{p}{2 x^{2}}+p q\right) d x=\frac{2}{x}+12+c
$$

Find the value of p and the value of q

$$
\int\left(\frac{p}{3 x^{3}}+p q^{3}\right) d x=\frac{-4}{3 x}-108+c
$$

Find the value of p and the value of q

$$
p=4, q=-3
$$

Your turn

The curve with equation $y=f(x)$ passes through $(3,1)$.
Given that $f^{\prime}(x)=4 x^{3}$, find the equation of the curve.

The curve with equation $y=f(x)$ passes through (1,3).
Given that $f^{\prime}(x)=3 x^{2}$, find the equation of the curve.

$$
y=x^{3}+2
$$

The curve with equation $y=f(x)$ passes through $\left(8, \frac{6408}{11}\right)$.
Given that $f^{\prime}(x)=\frac{x^{3}+4}{\sqrt[3]{x}}$, find the equation of the curve.

The curve with equation $y=f(x)$ passes through $(4,5)$.
Given that $f^{\prime}(x)=\frac{x^{2}-2}{\sqrt{x}}$, find the equation of the curve.

$$
y=\frac{2}{5} x^{\frac{5}{2}}-4 x^{\frac{1}{2}}+\frac{1}{5}
$$

Your turn

Evaluate:

$$
\int_{1}^{2} 3 x^{2} d x
$$

Evaluate:

$$
\int_{2}^{4} 5 x^{4} d x
$$

Your turn

Evaluate:

$$
\int_{1}^{5} 4 x^{3} d x
$$

624

Evaluate:

$$
\int_{0}^{2}\left(x^{\frac{1}{4}}-3\right)^{2} d x
$$

Evaluate:

$$
\begin{gathered}
\int_{0}^{1}\left(x^{\frac{1}{3}}-1\right)^{2} d x \\
\frac{1}{10}
\end{gathered}
$$

Your turn

Evaluate:

$$
\int_{-4}^{4} x^{3}-2 d x
$$

$$
\int_{-3}^{3} x^{2}+1 d x
$$

24

Given that P is a constant and

$$
\int_{3}^{7}(4 P x+7) d x=108 P^{2}
$$

find the possible values of P

Given that P is a constant and

$$
\int_{1}^{5}(2 P x+7) d x=4 P^{2}
$$

find the possible values of P

$$
P=-1, P=7
$$

Your turn

Given that $\int_{1}^{k} \frac{1}{\sqrt[4]{x}} d x=\frac{28}{3}$, calculate the value of k

Given that $\int_{1}^{k} \frac{1}{\sqrt[3]{x}} d x=\frac{9}{2}$,
calculate the value of k

$$
k=8
$$

Your turn

Find the area of the finite region bounded by the curve with equation $y=$ x^{3}, the lines with equation $x=1$ and $x=4$ and the x-axis.

Find the area of the finite region
bounded by the curve with equation $y=$
x^{4}, the lines with equation $x=3$ and $x=5$ and the x-axis.

2882
5

Your turn

Find the area of the finite region between the curve with equation $y=$ $6+x-x^{2}$ and the x-axis.

Find the area of the finite region between the curve with equation $y=$ $20-x-x^{2}$ and the x-axis.

Find the area of the finite region bounded by the curve with equation $y=$ $x^{2}(x+2)$ and the x-axis

Find the area of the finite region
bounded by the curve with equation $y=$ $x^{2}(3-x)$ and the x-axis
$\frac{27}{4}$

Your turn

Find the area of the finite region bounded by the curve with equation $y=$ $x(x-5)$ and the x-axis

Find the area of the finite region
bounded by the curve with equation $y=$ $x(x-3)$ and the x-axis

$\frac{9}{2}$

Find the total area bound between the curve $y=x(x-2)(x-4)$ and the x axis.

Find the total area bound between the curve $y=x(x-1)(x-2)$ and the x axis.
$\frac{1}{2}$

Find the total area bound between the curve $y=x^{3}+2 x^{2}-15 x$ and the x axis.

Find the total area bound between the curve $y=x^{3}+2 x^{2}-8 x$ and the x-axis.

$$
\frac{148}{3}
$$

Your turn

Determine the area bounded by the curve with equation $y=x(7-x)$ and the line with equation $y=2 x$

Determine the area bounded by the curve with equation $y=x(4-x)$ and the line with equation $y=x$
$\frac{9}{2}$

The diagram shows a sketch of the curve with equation $y=x(x-5)$ and the line with equation $y=3 x$. Find the area of the shaded region $O A C$.

The diagram shows a sketch of the curve with equation $y=x(x-3)$ and the line with equation $y=2 x$.
Find the area of the shaded region $O A C$.

$\frac{49}{3}$

Determine the area bounded by the curve with equation $y=5 x-x^{2}-3$ and the line with equation $y=5-x$

Determine the area bounded by the curve with equation $y=10 x-x^{2}-8$ and the line with equation $y=10-x$

