12.11) Modelling with differentiation

Your turn

Given that the area, $A \mathrm{~cm}^{2}$, of an expanding circle is related to its radius, $r \mathrm{~cm}$, by the formula $A=\pi r^{2}$, find the rate of change of area with respect to radius at the instant when the radius is 10 cm .

Given that the volume, $V \mathrm{~cm}^{3}$, of an expanding sphere is related to its radius, $r c m$, by the formula $V=\frac{4}{3} \pi r^{3}$, find the rate of change of volume with respect to radius at the instant when the radius is 5 cm .
$314 \mathrm{~cm}^{3}$ per cm

Worked example

Your turn

A cuboid is to be made with volume $81 \mathrm{~cm}^{3}$. The cuboid has a rectangular cross-section where the length of the rectangle is equal to twice its width, $x \mathrm{~cm}$. The volume of the cuboid is $81 \mathrm{~cm}^{3}$.
a) Show that the total length, L, of the twelve edges of the cuboid is given by $L=12 x+\frac{162}{x^{2}}$
b) Given that x can vary, use differentiation to find the maximum or minimum value of L
c) Justify that the value of L you have found is a minimum

A cuboid is to be made from $54 \mathrm{~m}^{2}$ of sheet metal.
The cuboid has a horizontal base and no top.
The height of the cuboid is x metres.
Two of the opposite vertical faces are squares.
a) Show that the volume, $\mathrm{V} \mathrm{m}^{3}$, of the tank is given by

$$
V=18 x-\frac{2}{3} x^{3}
$$

b) Given that x can vary, use differentiation to find the maximum or minimum value of V.
c) Justify that the value of V you have found is a maximum
a) Shown
b) $V=36$
c) $\frac{d^{2} V}{d x^{2}}=-4 x ; x=3, \frac{d^{2} V}{d x^{2}}=-12<0$

