12.11) Modelling with differentiation

Worked example	Your turn
Given that the area, $A \ cm^2$, of an expanding circle is related to its radius, $r \ cm$, by the formula $A = \pi r^2$, find the rate of change of area with respect to radius at the instant when the radius is 10 cm .	Given that the volume, $V cm^3$, of an expanding sphere is related to its radius, $r cm$, by the formula $V = \frac{4}{3}\pi r^3$, find the rate of change of volume with respect to radius at the instant when the radius is 5 cm.
	314 <i>cm</i> ³ per <i>cm</i>

Worked example	Your turn
A cuboid is to be made with volume $81 \ cm^3$. The cuboid has a rectangular cross-section where the length of the rectangle is equal to twice its width, $x \ cm$. The volume of the cuboid is $81 \ cm^3$. a) Show that the total length, L , of the twelve edges of the cuboid is given by $L = 12x + \frac{162}{x^2}$ b) Given that $x \ can \ vary$, use differentiation to find the maximum or minimum value of L c) Justify that the value of $L \ you$ have found is a minimum	A cuboid is to be made from 54m ² of sheet metal. The cuboid has a horizontal base and no top. The height of the cuboid is <i>x</i> metres. Two of the opposite vertical faces are squares. a) Show that the volume, V m ³ , of the tank is given by $V = 18x - \frac{2}{3}x^3$. b) Given that <i>x</i> can vary, use differentiation to find the maximum or minimum value of <i>V</i> . c) Justify that the value of <i>V</i> you have found is a maximum

a) Shown
b)
$$V = 36$$

c) $\frac{d^2V}{dx^2} = -4x$; $x = 3$, $\frac{d^2V}{dx^2} = -12 < 0$