12.10) Sketching gradient functions

Your turn

Sketch $y=f^{\prime}(x)$ on the same axes

Sketch $y=f^{\prime}(x)$ on the same axes

Worked example
Sketch $y=f^{\prime}(x)$ on the same axes

Your turn

Sketch $y=f^{\prime}(x)$ on the same axes

Worked example

Your turn

A negative cubic has the equation $y=f(x)$. The curve has stationary points at $(4,1)$ and $(-1,0)$ and cuts the x-axis at $(6,0)$.
Sketch the gradient function, $y=f^{\prime}(x)$, showing the coordinates of any points where the curve cuts or meets the x-axis.

A positive cubic has the equation $y=f(x)$. The curve has stationary points at $(-1,4)$ and $(1,0)$ and cuts the x-axis at $(-3,0)$.
Sketch the gradient function, $y=f^{\prime}(x)$, showing the coordinates of any points where the curve cuts or meets the x-axis.

