12.9) Stationary points

Find the least value of

$$
f(x)=x^{2}+6 x-9
$$

Find the least value of

$$
f(x)=x^{2}-4 x+9
$$

5

Find the turning point of

$$
y=\sqrt[4]{x}-2 x
$$

Find the turning point of

$$
y=\sqrt{x}-x
$$

$$
\left(\frac{1}{4}, \frac{1}{4}\right)
$$

Find the coordinates of the turning/stationary point(s) of the curves by differentiation:

$$
y=x^{2}+6 x-2
$$

$$
y=2 x^{3}+6 x^{2}-4
$$

Find the coordinates of the turning/stationary point(s) of the curves by differentiation:

$$
\begin{gathered}
y=x^{3}+3 x^{2}-4 \\
(-2,0) \text { and }(0,-4)
\end{gathered}
$$

Find the coordinates of the turning/stationary point(s) of the curves by differentiation:

$$
y=\frac{2}{3} x^{3}-3.5 x^{2}+3 x+5
$$

Find the coordinates of the turning/stationary point(s) of the curves by differentiation:

$$
\begin{gathered}
y=x^{3}+\frac{1}{2} x^{2}-2 x+4 \\
\left(-1, \frac{11}{2}\right) \text { and }\left(\frac{2}{3}, \frac{86}{27}\right)
\end{gathered}
$$

Find the stationary points on the curve $y=\frac{5}{3} x^{3}-80 x$

Find the stationary points on the curve $y=x^{3}-12 x$

$$
(-2,16) \text { and }(2,-16)
$$

Your turn

Find the stationary point on the curve with equation
$y=x^{4}-108 x$, and determine whether it is a local maximum, a local minimum or a point of inflection.

Find the stationary point on the curve with equation
$y=x^{4}-32 x$, and determine whether it is a local maximum, alocalminimum or a.point of inflection.

Your turn

Find the coordinates of the stationary points on the curve with equation $y=4 x^{3}+30 x^{2}+48 x-$ 3 and use the second derivative to determine their nature

Find the coordinates of the stationary points on the curve with equation $y=2 x^{3}-15 x^{2}+24 x+$ 6 and use the second derivative to determine their nature
$(1,17)$ Local maximum
$(4,-10)$ Local minimum

Your turn

Sketch the graph of $y=\frac{1}{x}+\frac{256}{3} x^{3}$ labelling the stationary points.

