12.6) Gradients, tangents and normal

Worked example	Your turn
Find the gradient of the curve: $y = 8\sqrt{x} + \frac{48}{x}$ at (4, 28)	Find the gradient of the curve: $y = 5\sqrt{x} - \frac{3}{x}$ at $(16, \frac{317}{16})$ $\frac{163}{256}$
$y = \frac{3}{x^2} - \frac{18}{\sqrt{x}} \text{ at } (9, -\frac{161}{27})$	

Worked example	Your turn
Find the coordinates of the point(s) where the gradient is 10: $y = x^3 + 6x^2 - 11x + 7$	Find the coordinates of the point(s) where the gradient is 2: $y = x^3 - 3x^2 - 7x + 8$ (-1, 11) and (3, -13)

Worked example	Your turn
For the curve $y = f(x)$,	For the curve $y = f(x)$,
$\frac{dy}{dx} = 723 + kx^5 + 2k,$	$\frac{dy}{dx} = \frac{3}{2} - kx^4 + k,$
where k is a constant.	where k is a constant.
When $x = -3$, the gradient of the	When $x = -2$, the gradient of the
curve is 241. Find k .	curve is -6 . Find k .
	$k = \frac{1}{2}$

Worked example	Your turn
Find the equation of the tangent to the curve $y = x^4$ when $x = 2$	Find the equation of the tangent to the curve $y = x^3$ when $x = 2$
	y - 8 = 12(x - 2) y = 12x - 16

Worked example	Your turn
Find the equation of the normal to the curve $y = x^4$ when $x = 2$	Find the equation of the normal to the curve $y = x^3$ when $x = 2$
	$y - 8 = -\frac{1}{12}(x - 2)$ $y = -\frac{1}{12}x + \frac{49}{6}$

Worked example	Your turn
Find the equation of the tangent to the curve with equation	Find the equation of the tangent to the curve with equation
$y = x^3 - 5x^2 - 3x + 2$ at the point (5, -13)	$y = x^3 - 3x^2 + 2x - 1$ at the point (3, 5)
	y = 11x - 28

Worked example	Your turn
Find the equation of the normal to the curve with equation $y = 3 - 4\sqrt[3]{x}$ at the point where $x = 8$. Give your answer in the form $ax + by + c = 0$	Find the equation of the normal to the curve with equation $y = 8 - 3\sqrt{x}$ at the point where $x = 4$. Give your answer in the form $ax + by + c = 0$ 3y - 4x + 10 = 0

Worked example	Your turn
The point P with x-coordinate $\frac{1}{4}$ lies on the	The point <i>P</i> with <i>x</i> -coordinate $\frac{1}{2}$ lies on the
curve with equation $y = 2x^2$.	curve with equation $y = 4x^2$.
The normal to the curve at <i>P</i> intersects the	The normal to the curve at <i>P</i> intersects the
curve at points <i>P</i> and <i>Q</i> .	curve at points <i>P</i> and <i>Q</i> .
Find the coordinates of Q	Find the coordinates of Q

$$\left(-\frac{9}{16},\frac{81}{64}\right)$$