12.6) Gradients, tangents and normal

Find the gradient of the curve:

$$
y=8 \sqrt{x}+\frac{48}{x} \text { at }(4,28)
$$

$$
y=\frac{3}{x^{2}}-\frac{18}{\sqrt{x}} \text { at }\left(9,-\frac{161}{27}\right)
$$

Find the gradient of the curve:

$$
\begin{gathered}
y=5 \sqrt{x}-\frac{3}{x} \text { at }\left(16, \frac{317}{16}\right) \\
\frac{163}{256}
\end{gathered}
$$

Find the coordinates of the point(s) where the gradient is 10 :
$y=x^{3}+6 x^{2}-11 x+7$

Find the coordinates of the point(s) where the gradient is 2 :
$y=x^{3}-3 x^{2}-7 x+8$ $(-1,11)$ and $(3,-13)$

Your turn

For the curve $y=f(x)$,

$$
\frac{d y}{d x}=723+k x^{5}+2 k
$$

where k is a constant.
When $x=-3$, the gradient of the curve is 241 . Find k.

For the curve $y=f(x)$,

$$
\frac{d y}{d x}=\frac{3}{2}-k x^{4}+k
$$

where k is a constant.
When $x=-2$, the gradient of the curve is -6 . Find k.

$$
k=\frac{1}{2}
$$

Your turn

Find the equation of the tangent to the curve $y=x^{4}$ when $x=2$

Find the equation of the tangent to the curve $y=x^{3}$ when $x=2$

$$
\begin{gathered}
y-8=12(x-2) \\
y=12 x-16
\end{gathered}
$$

Find the equation of the normal to the curve $y=x^{4}$ when $x=2$

Find the equation of the normal to the curve $y=x^{3}$ when $x=2$

$$
\begin{gathered}
y-8=-\frac{1}{12}(x-2) \\
y=-\frac{1}{12} x+\frac{49}{6}
\end{gathered}
$$

Your turn

Find the equation of the tangent to the curve with equation $y=x^{3}-5 x^{2}-3 x+2$ at the point $(5,-13)$

Find the equation of the tangent to the curve with equation $y=x^{3}-3 x^{2}+2 x-1$ at the point $(3,5)$

$$
y=11 x-28
$$

Your turn

Find the equation of the normal to the curve with equation $y=3-4 \sqrt[3]{x}$ at the point where $x=8$.
Give your answer in the form $a x+b y+c=$ 0

Find the equation of the normal to the curve with equation $y=8-3 \sqrt{x}$ at the point where $x=4$.
Give your answer in the form $a x+b y+c=$ 0

$$
3 y-4 x+10=0
$$

Your turn

The point P with x-coordinate $\frac{1}{4}$ lies on the curve with equation $y=2 x^{2}$.
The normal to the curve at P intersects the curve at points P and Q.
Find the coordinates of Q

The point P with x-coordinate $\frac{1}{2}$ lies on the curve with equation $y=4 x^{2}$.
The normal to the curve at P intersects the curve at points P and Q.
Find the coordinates of Q

$$
\left(-\frac{9}{16}, \frac{81}{64}\right)
$$

