12.4) Differentiating quadratics

Your turn

Find the gradient of the curve:

$$
y=x^{2}+3 x+2 \text { at }(4,30)
$$

Find the gradient of the curve:

$$
y=3 x^{2}-2 x+1 \text { at }(-2,17)
$$

$$
-14
$$

Find the coordinates of the point(s) where the gradient is 4 :

$$
y=x^{2}-8 x+3
$$

Find the coordinates of the point(s) where the gradient is 3 :

$$
y=3 x^{2}-9 x+7
$$

$(2,1)$

Your turn

Let $f(x)=8 x^{2}-4 x-3$
a) Find the gradient of $y=f(x)$ at the point $\left(\frac{1}{2}, 0\right)$
b) Find the coordinates of the point on the graph of $y=f(x)$ where the gradient is 44 .
c) Find the gradient of $y=f(x)$ at the points where the curve meets the line $y=12 x+21$.

Let $f(x)=4 x^{2}-8 x+3$
a) Find the gradient of $y=f(x)$ at the point $\left(\frac{1}{2}, 0\right)$
b) Find the coordinates of the point on the graph of $y=f(x)$ where the gradient is 8.
c) Find the gradient of $y=f(x)$ at the points where the curve meets the line $y=4 x-5$.
a) -4
b) $(2,3)$
c) At $(1,-1)$ gradient $=0$ At $(2,3)$ gradient $=8$

