12.4) Application to mechanics

Convert these vectors to scalar form:

- A force of $\left(\begin{array}{c}1 \\ -3 \\ 4\end{array}\right) N$

Convert these vectors to scalar form:

- A force of $\left(\begin{array}{c}3 \\ 4 \\ -1\end{array}\right) N$

$$
\text { A force of } 5.10 \mathrm{~N}(3 \mathrm{sf})
$$

- An acceleration of $\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right) m s^{-2}$
- A displacement of $\left(\begin{array}{c}-6 \\ 8 \\ -24\end{array}\right) m$
- A velocity of $\left(\begin{array}{c}8 \\ -6 \\ 0\end{array}\right) m s^{-1}$

A particle of mass 0.25 kg is acted on by three forces.

$$
\begin{aligned}
& F_{1}=(\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k}) N \\
& F_{2}=(2 \boldsymbol{i}-4 \boldsymbol{k}) N \\
& F_{3}=(-5 \boldsymbol{i}+3 \boldsymbol{j}+4 \boldsymbol{k}) N
\end{aligned}
$$

a) Find the resultant force R acting on the particle.
b) Find the acceleration of the particle, giving your answer in
the form $(p \boldsymbol{i}+q \boldsymbol{j}+r \boldsymbol{k}) \mathrm{ms}^{-2}$.
c) Find the magnitude of the acceleration.

Given that the particle starts at rest,
d) Find the distance travelled by the particle in the first 3 seconds of its motion.

A particle of mass 0.5 kg is acted on by three forces.

$$
\begin{aligned}
& F_{1}=(2 \boldsymbol{i}-\boldsymbol{j}+2 \boldsymbol{k}) N \\
& F_{2}=(-\boldsymbol{i}+3 \boldsymbol{j}-3 \boldsymbol{k}) N \\
& F_{3}=(4 \boldsymbol{i}-3 \boldsymbol{j}-2 \boldsymbol{k}) N
\end{aligned}
$$

a) Find the resultant force R acting on the particle.
b) Find the acceleration of the particle, giving your answer
in
the form $(p \boldsymbol{i}+q \boldsymbol{j}+r \boldsymbol{k}) \mathrm{ms}^{-2}$.
c) Find the magnitude of the acceleration.

Given that the particle starts at rest,
d) Find the distance travelled by the particle in the first 6 seconds of its motion.
a) $\left(\begin{array}{c}5 \\ -1 \\ -3\end{array}\right) N$
b) $\boldsymbol{a}=(10 \boldsymbol{i}-2 \boldsymbol{j}-6 \boldsymbol{k}) \mathrm{ms}^{-2}$
c) $|\boldsymbol{a}|=\sqrt{140} \mathrm{~ms}^{-2}=11.83 \mathrm{~ms}^{-2}(2 \mathrm{dp})$
d) $36 \sqrt{35} \mathrm{~m}=212.98 \mathrm{~m}$ (2 dp)

