12.3) Solving geometric problems

Your turn

A, B, C and D are the points ($3,-4,-9$), $(1,-7,-3),(1,0,-15)$ and $(7,9,-33)$ respectively.
a) Find $\overrightarrow{A B}$ and $\overrightarrow{D C}$, giving your answers in the form $p \boldsymbol{i}+q \boldsymbol{j}+r \boldsymbol{k}$.
b) Show that the lines $A B$ and $D C$ are parallel and that $\overrightarrow{D C}=3 \overrightarrow{A B}$.
c) Hence describe the quadrilateral $A B C D$.
A, B, C and D are the points $(2,-5,-8)$,
$(1,-7,-3),(0,15,-10)$ and $(2,19,-20)$ respectively.
a) Find $\overrightarrow{A B}$ and $\overrightarrow{D C}$, giving your answers in the form $p \boldsymbol{i}+q \boldsymbol{j}+r \boldsymbol{k}$.
b) Show that the lines $A B$ and $D C$ are parallel and that $\overrightarrow{D C}=2 \overrightarrow{A B}$.
c) Hence describe the quadrilateral $A B C D$.
a)
$\overrightarrow{A B}=-\boldsymbol{i}-2 \boldsymbol{j}+5 \boldsymbol{k}$
$\overrightarrow{D C}=-2 \boldsymbol{i}-4 \boldsymbol{j}+10 \boldsymbol{k}$
b)
$\overrightarrow{D C}=2(-\boldsymbol{i}+2 \boldsymbol{j}+5 \boldsymbol{k})=2 \overrightarrow{A B}$
They are multiples \therefore parallel.
c)
$A B$ and $D C$ are parallel but different in length. Therefore $A B C D$ is a trapezium.
P, Q and R are the points
$(9,3,-4),(-5,5,5)$ and $(0,2,-8)$ respectively.
Find the coordinates of the point S so that PQRS forms a parallelogram.
P, Q and R are the points
$(4,-9,-3),(7,-7,-7)$ and $(8,-2,0)$
respectively.
Find the coordinates of the point S so that $P Q R S$ forms a parallelogram.

$$
S(5,-4,4)
$$

Your turn

Given that
$(q-5) \boldsymbol{i}+2 \boldsymbol{j}-120 \boldsymbol{k}=p \boldsymbol{i}+q \boldsymbol{j}+4 p q r \boldsymbol{k}$, find the values of p, q and r.

Given that
$3 \boldsymbol{i}+(p+2) \boldsymbol{j}+120 \boldsymbol{k}=p \boldsymbol{i}-q \boldsymbol{j}+4 p q r \boldsymbol{k}$, find the values of p, q and r.

$$
p=3, q=-5, r=-2
$$

Your turn

The diagram shows a cuboid whose vertices are O, A, B, C, D, E, F and G. Vectors a, b and c are the position vectors of the vertices A, B and C respectively. Prove that the diagonals $O E$ and $A F$ bisect each other.

The diagram shows a cuboid whose vertices are O, A, B, C, D, E, F and G.
Vectors a, b and c are the position vectors of the vertices A, B and C respectively.
Prove that the diagonals $O E$ and $B G$ bisect each other.

Proof

