12.3) Solving geometric problems

Worked example	Your turn
 A, B, C and D are the points (3, -4, -9), (1, -7, -3), (1, 0, -15) and (7, 9, -33) respectively. a) Find AB and DC, giving your answers in the form pi + qj + rk. b) Show that the lines AB and DC are parallel and that DC = 3AB. c) Hence describe the quadrilateral ABCD. 	 A, B, C and D are the points (2, -5, -8), (1, -7, -3), (0,15, -10) and (2,19, -20) respectively. a) Find AB and DC, giving your answers in the form pi + qj + rk. b) Show that the lines AB and DC are parallel and that DC = 2AB. c) Hence describe the quadrilateral ABCD.
	a) $\overrightarrow{AB} = -\mathbf{i} - 2\mathbf{j} + 5\mathbf{k}$ $\overrightarrow{DC} = -2\mathbf{i} - 4\mathbf{j} + 10\mathbf{k}$
	b) $\overrightarrow{DC} = 2(-i + 2j + 5k) = 2\overrightarrow{AB}$ They are multiples \therefore parallel.
	c) <i>AB</i> and <i>DC</i> are parallel but different in length. Therefore <i>ABCD</i> is a trapezium.

Worked example	Your turn
P, Q and R are the points	P, Q and R are the points
(9,3, -4), (-5,5,5) and (0, 2, -8)	(4, -9 , -3), (7, -7 , -7) and (8, -2 ,0)
respectively.	respectively.
Find the coordinates of the point S so that	Find the coordinates of the point S so that
PQRS forms a parallelogram.	PQRS forms a parallelogram.

S(5, -4, 4)

Worked example	Your turn
Given that $(q-5)\mathbf{i} + 2\mathbf{j} - 120\mathbf{k} = p\mathbf{i} + q\mathbf{j} + 4pqr\mathbf{k}$, find the values of p, q and r .	Given that $3\mathbf{i} + (p+2)\mathbf{j} + 120\mathbf{k} = p\mathbf{i} - q\mathbf{j} + 4pqr\mathbf{k}$, find the values of p, q and r .
	p = 3, q = -5, r = -2

Worked example	Your turn
The diagram shows a cuboid whose vertices are O, A, B, C, D, E, F and G . Vectors a, b and c are the position vectors of the vertices A, B and C respectively. Prove that the diagonals OE and AF bisect each other.	The diagram shows a cuboid whose vertices are O, A, B, C, D, E, F and G . Vectors a, b and c are the position vectors of the vertices A, B and C respectively. Prove that the diagonals OE and BG bisect each other. Proof