12.2) Vectors in 3D

Worked example	Your turn
 Consider the points A(−1, −5, 2) and B(−7, 3, 0). a) Find the position vectors of A and B in <i>ijk</i> notation b) Find the vector AB as a column vector. 	Consider the points $A(1, 5, -2)$ and B(0, -3, 7). a) Find the position vectors of A and B in <i>ijk</i> notation b) Find the vector \overrightarrow{AB} as a column vector. a) $\overrightarrow{OA} = \mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$ $\overrightarrow{OB} = -3\mathbf{j} + 7\mathbf{k}$ b) $\overrightarrow{AB} = \begin{pmatrix} -1 \\ -8 \\ 9 \end{pmatrix}$

Worked example	Your turn
The vectors \boldsymbol{a} and \boldsymbol{b} are given by: $\boldsymbol{a} = \begin{pmatrix} 3 \\ -2 \\ -5 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix}$ a) Find: i) $\boldsymbol{a} + 3\boldsymbol{b}$ ii) $4\boldsymbol{a} - 5\boldsymbol{b}$	The vectors \boldsymbol{a} and \boldsymbol{b} are given by: $\boldsymbol{a} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix}$ a) Find: i) $4\boldsymbol{a} + \boldsymbol{b}$ ii) $2\boldsymbol{a} - 3\boldsymbol{b}$
b) State whether these vectors are parallel to – 4 <i>i</i> + 16 <i>j</i>	b) State whether these vectors are parallel to $4i - 5k$ a) $i) \begin{pmatrix} 12 \\ -14 \\ 20 \\ 10 \end{pmatrix}$ b) $i) \begin{pmatrix} 12 \\ -14 \\ 20 \end{pmatrix} = 3 \begin{pmatrix} 4 \\ -\frac{14}{3} \\ \frac{20}{3} \end{pmatrix} \neq k \begin{pmatrix} 4 \\ 0 \\ -5 \end{pmatrix} \therefore \text{ Not parallel}$ $i) \begin{pmatrix} -8 \\ 0 \\ 10 \end{pmatrix} = -2 \begin{pmatrix} 4 \\ 0 \\ -5 \end{pmatrix} = k \begin{pmatrix} 4 \\ 0 \\ -5 \end{pmatrix} (k = -2) \therefore \text{ Parallel}$

Worked example	Your turn
Find the magnitude of the vector $\begin{pmatrix} 6\\8\\24 \end{pmatrix}$	Find the magnitude of the vector $\begin{pmatrix} 3\\4\\12 \end{pmatrix}$
	13

Worked example	Your turn
Find the magnitude of the vector a = 6i - 8j + 24k and hence find \hat{a} , the unit vector in the direction of a .	Find the magnitude of the vector a = 2i - j + 4k and hence find \hat{a} , the unit vector in the direction of a .
	$\widehat{\boldsymbol{a}} = \frac{1}{\sqrt{21}} (2\boldsymbol{i} - \boldsymbol{j} + 4\boldsymbol{k})$

Find the magnitude of the vector a = i - 4j + 2kand hence find \hat{a} , the unit vector in the direction of a.

Worked example	Your turn
Find the angles that the vector a = i - 2j + 3k makes with each of the positive coordinate axes. Give your answers to 1 decimal place.	Find the angles that the vector a = 2i - 3j - k makes with each of the positive coordinate axes. Give your answers to 1 decimal place.
	$\begin{array}{l} \theta_x = 57.7^\circ \\ \theta_y = 143.3^\circ \\ \theta_z = 105.5^\circ \end{array}$

vorked example	rour turn
The points A and B have position vectorsThe points $i + 5j + 3k$ and $-2i + 4j + 8k$ relative to a $4i + 2j$ fixed origin, 0.fixed oShow that ΔOAB is isosceles.Show t	ints A and B have position vectors $\mathbf{j} + 7\mathbf{k}$ and $3\mathbf{i} + 4\mathbf{j} - \mathbf{k}$ relative to a rigin, O. that ΔOAB is isosceles.
	$\begin{vmatrix} \overrightarrow{AB} \\ = \sqrt{69} \\ \overrightarrow{OA} = \sqrt{26} \\ \overrightarrow{AB} = \overrightarrow{OA} \neq \overrightarrow{OB} \\ \therefore OAB \text{ is isosceles.} \end{vmatrix}$

Worked example	Your turn
a = 3i + 2j + k and $b = i + 3j + 5kBy considering the angles that a and b makewith the x-axis, determine the area of OABwhere \overrightarrow{OA} = a and \overrightarrow{OB} = b.$	a = 2i + j + k and $b = i + 3j + 2kBy considering the angles that a and b makewith the x-axis, determine the area of OABwhere \overrightarrow{OA} = a and \overrightarrow{OB} = b.$
	2.90 (3 sf)

Worked example	Your turn
A triangle PQR is such that $\overrightarrow{PQ} = -2i + 3j - k$ and $\overrightarrow{QR} = 4i - 3j - 2k$ Find $< PQR$ to 1 decimal place	A triangle PQR is such that $\overrightarrow{PQ} = 2i - 3j + k$ and $\overrightarrow{QR} = -4i + 3j + 2k$ Find $< PQR$ to 1 decimal place
	41.9°