12.2) Vectors in 3D

Consider the points $A(-1,-5,2)$ and $B(-7,3,0)$.
a) Find the position vectors of A and B in $i j k$ notation
b) Find the vector $\overrightarrow{A B}$ as a column vector.

Consider the points $A(1,5,-2)$ and $B(0,-3,7)$.
a) Find the position vectors of A and B in $i j k$ notation
b) Find the vector $\overrightarrow{A B}$ as a column vector.
a) $\overrightarrow{O A}=\boldsymbol{i}+5 \boldsymbol{j}-2 \boldsymbol{k}$
$\overrightarrow{O B}=-3 \boldsymbol{j}+7 \boldsymbol{k}$
b) $\overrightarrow{A B}=\left(\begin{array}{c}-1 \\ -8 \\ 9\end{array}\right)$

Your turn

The vectors \boldsymbol{a} and \boldsymbol{b} are given by:

$$
\boldsymbol{a}=\left(\begin{array}{c}
3 \\
-2 \\
-5
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{c}
2 \\
0 \\
-4
\end{array}\right)
$$

a) Find:
i) $a+3 b$
ii) $4 a-5 b$
b) State whether these vectors are parallel to $-4 i+16 \boldsymbol{j}$

The vectors \boldsymbol{a} and \boldsymbol{b} are given by:

$$
\boldsymbol{a}=\left(\begin{array}{c}
2 \\
-3 \\
5
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{c}
4 \\
-2 \\
0
\end{array}\right)
$$

a) Find:
i) $4 a+b$
ii) $2 \boldsymbol{a}-3 \boldsymbol{b}$
b) State whether these vectors are parallel to $4 \boldsymbol{i}-5 \boldsymbol{k}$
a)
i) $\left(\begin{array}{c}12 \\ -14 \\ 20\end{array}\right)$
ii) $\left(\begin{array}{c}-8 \\ 0 \\ 10\end{array}\right)$
b)
i) $\left(\begin{array}{c}12 \\ -14 \\ 20\end{array}\right)=3\left(\begin{array}{c}4 \\ -\frac{14}{3} \\ \frac{20}{3}\end{array}\right) \neq k\left(\begin{array}{c}4 \\ 0 \\ -5\end{array}\right) \therefore$ Not parallel
ii) $\left(\begin{array}{c}-8 \\ 0 \\ 10\end{array}\right)=-2\left(\begin{array}{c}4 \\ 0 \\ -5\end{array}\right)=k\left(\begin{array}{c}4 \\ 0 \\ -5\end{array}\right)(k=-2) \therefore$ Parallel

Your turn

Find the magnitude of the vector

$$
\boldsymbol{a}=6 \boldsymbol{i}-8 \boldsymbol{j}+24 \boldsymbol{k}
$$

and hence find $\widehat{\boldsymbol{a}}$, the unit vector in the direction of \boldsymbol{a}.

Find the magnitude of the vector

$$
\boldsymbol{a}=2 \boldsymbol{i}-\boldsymbol{j}+4 \boldsymbol{k}
$$

and hence find $\widehat{\boldsymbol{a}}$, the unit vector in the direction of \boldsymbol{a}.

$$
\widehat{\boldsymbol{a}}=\frac{1}{\sqrt{21}}(2 \boldsymbol{i}-\boldsymbol{j}+4 \boldsymbol{k})
$$

Your turn

Find the angles that the vector

$$
\boldsymbol{a}=\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k}
$$

makes with each of the positive coordinate axes. Give your answers to 1 decimal place.

Find the angles that the vector

$$
\boldsymbol{a}=2 \boldsymbol{i}-3 \boldsymbol{j}-\boldsymbol{k}
$$

makes with each of the positive coordinate axes. Give your answers to 1 decimal place.

$$
\begin{gathered}
\theta_{x}=57.7^{\circ} \\
\theta_{y}=143.3^{\circ} \\
\theta_{z}=105.5^{\circ}
\end{gathered}
$$

Your turn

The points A and B have position vectors $\boldsymbol{i}+5 \boldsymbol{j}+3 \boldsymbol{k}$ and $-2 \boldsymbol{i}+4 \boldsymbol{j}+8 \boldsymbol{k}$ relative to a fixed origin, 0 . Show that $\triangle O A B$ is isosceles.

The points A and B have position vectors $4 \boldsymbol{i}+2 \boldsymbol{j}+7 \boldsymbol{k}$ and $3 \boldsymbol{i}+4 \boldsymbol{j}-\boldsymbol{k}$ relative to a fixed origin, O.
Show that $\triangle O A B$ is isosceles.

$$
\begin{aligned}
|\overrightarrow{A B}| & =\sqrt{69} \\
|\overrightarrow{O A}| & =\sqrt{69} \\
|\overrightarrow{O B}| & =\sqrt{26} \\
|\overrightarrow{A B}| & =|\overrightarrow{O A}| \neq|\overrightarrow{O B}|
\end{aligned}
$$

$\therefore O A B$ is isosceles.

Your turn

$$
\boldsymbol{a}=3 \boldsymbol{i}+2 \boldsymbol{j}+\boldsymbol{k} \text { and } \boldsymbol{b}=\boldsymbol{i}+3 \boldsymbol{j}+5 \boldsymbol{k}
$$ By considering the angles that \boldsymbol{a} and \boldsymbol{b} make with the x-axis, determine the area of $O A B$ where $\overrightarrow{O A}=\boldsymbol{a}$ and $\overrightarrow{O B}=\boldsymbol{b}$.

$$
\boldsymbol{a}=2 \boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k} \text { and } \boldsymbol{b}=\boldsymbol{i}+3 \boldsymbol{j}+2 \boldsymbol{k}
$$

By considering the angles that \boldsymbol{a} and \boldsymbol{b} make with the x-axis, determine the area of $O A B$ where $\overrightarrow{O A}=\boldsymbol{a}$ and $\overrightarrow{O B}=\boldsymbol{b}$.

$$
2.90 \text { (3 sf) }
$$

Your turn

A triangle $P Q R$ is such that $\overrightarrow{P Q}=-2 \boldsymbol{i}+3 \boldsymbol{j}-\boldsymbol{k}$ and $\overrightarrow{Q R}=4 \boldsymbol{i}-3 \boldsymbol{j}-2 \boldsymbol{k}$ Find $<P Q R$ to 1 decimal place

A triangle $P Q R$ is such that
$\overrightarrow{P Q}=2 \boldsymbol{i}-3 \boldsymbol{j}+\boldsymbol{k}$ and $\overrightarrow{Q R}=-4 \boldsymbol{i}+3 \boldsymbol{j}+2 \boldsymbol{k}$ Find $<P Q R$ to 1 decimal place

