12.2) Finding the derivative

Worked example	Your turn
The point <i>A</i> with coordinates (8,64) lies on the curve with equation $y = x^2$. At point <i>A</i> the curve has gradient <i>g</i> . a) Show that $g = \lim_{h \to 0} (16 + h)$ b) Deduce the value of <i>g</i> .	The point <i>A</i> with coordinates (4,16) lies on the curve with equation $y = x^2$. At point <i>A</i> the curve has gradient <i>g</i> . a) Show that $g = \lim_{h \to 0} (8 + h)$ b) Deduce the value of <i>g</i> .
	Shown

Worked example	Your turn
Prove from first principles that the derivative of 3 <i>x</i> is 3	Prove from first principles that the derivative of 5x is 5 $f(x) = 5x$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{5(x+h) - 5(x)}{h}$ $= \lim_{h \to 0} \frac{5x + 5h - 5x}{h}$ $= \lim_{h \to 0} \frac{5h}{h}$ $= \lim_{h \to 0} 5$ $= 5$

Worked example	Your turn
Prove from first principles that the derivative of $3x^2$ is $6x$	Prove from first principles that the derivative of $5x^2$ is $10x$ $f(x) = 5x^2$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{5(x+h)^2 - 5(x)^2}{h}$ $= \lim_{h \to 0} \frac{5x^2 + 10xh + 5h^2 - 5x^2}{h}$ $= \lim_{h \to 0} \frac{10xh + 5h^2}{h}$ $= \lim_{h \to 0} \frac{h(10x + 5h)}{h}$ $= \lim_{h \to 0} (10x + 5h)$ $= 10x$ $[As h \to 0, 5h \to 0]$

Worked example	Your turn
Prove from first principles that the derivative of x^4 is $4x^3$.	Prove from first principles that the derivative of x^3 is $3x^2$ $f(x) = x^3$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{(x+h)^3 - (x)^3}{h}$ $= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h}$ $= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h}$ $= \lim_{h \to 0} \frac{h(3x^2 + 3xh^2 + h^3)}{h}$ $= \lim_{h \to 0} (3x^2 + 3xh + h^2)$ $= 3x^2$ [As $h \to 0, 3xh \to 0$ and $h^2 \to 0$]