12.2) Finding the derivative

Your turn

The point A with coordinates $(8,64)$ lies on the curve with equation $y=x^{2}$. At point A the curve has gradient g.
a) Show that $g=\lim _{h \rightarrow 0}(16+h)$
b) Deduce the value of g.

The point A with coordinates $(4,16)$ lies on the curve with equation $y=x^{2}$.
At point A the curve has gradient g.
a) Show that $g=\lim _{h \rightarrow 0}(8+h)$
b) Deduce the value of g.

Your turn

Prove from first principles that the derivative of $3 x$ is 3

Prove from first principles that the derivative of $5 x$ is 5

$$
\begin{aligned}
f(x) & =5 x \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5(x+h)-5(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 x+5 h-5 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 h}{h} \\
& =\lim _{h \rightarrow 0} 5 \\
& =5
\end{aligned}
$$

Prove from first principles that the derivative of $3 x^{2}$ is $6 x$

Prove from first principles that the derivative of $5 x^{2}$ is $10 x$

$$
\begin{aligned}
f(x) & =5 x^{2} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5(x+h)^{2}-5(x)^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 x^{2}+10 x h+5 h^{2}-5 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{10 x h+5 h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(10 x+5 h)}{h} \\
& =\lim _{h \rightarrow 0}(10 x+5 h) \\
& =10 x \\
\text { [As } h & \rightarrow 0,5 h \rightarrow 0]
\end{aligned}
$$

Prove from first principles that the derivative of x^{4} is $4 x^{3}$.

Prove from first principles that the derivative of x^{3} is $3 x^{2}$

$$
\begin{aligned}
f(x) & =x^{3} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{3}-(x)^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h^{2}+h^{3}\right)}{h} \\
& =\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}\right) \\
& =3 x^{2} \\
\text { [As } h & \left.\rightarrow 0,3 x h \rightarrow 0 \text { and } h^{2} \rightarrow 0\right]
\end{aligned}
$$

