12) Vectors

12.1) 3D coordinates
12.2) Vectors in 3D
12.3) Solving geometric problems
12.4) Application to mechanics

Your turn

Find the distance from the origin to the point with coordinates $(6,8,24)$

Find the distance from the origin to the point with coordinates $(-3,-4,-12)$

Your turn

Find the distance between the points: $A(1,3,5)$ and $B(-6,0,-4)$
$C(-1,0,1)$ and $D(0,0,-3)$

Your turn

The coordinates of A and B are $(3,5,-2)$ and $(3, k,-1)$ respectively. Given that the distance from A to B is $\sqrt{2}$ units, find the possible values of k.

The coordinates of A and B are $(5,3,-8)$ and $(1, k,-3)$ respectively. Given that the distance from A to B is $3 \sqrt{10}$ units, find the possible values of k.

$$
k=-4 \text { or } k=10
$$

12.2) Vectors in 3D

Consider the points $A(-1,-5,2)$ and $B(-7,3,0)$.
a) Find the position vectors of A and B in $i j k$ notation
b) Find the vector $\overrightarrow{A B}$ as a column vector.

Consider the points $A(1,5,-2)$ and $B(0,-3,7)$.
a) Find the position vectors of A and B in $i j k$ notation
b) Find the vector $\overrightarrow{A B}$ as a column vector.
a) $\overrightarrow{O A}=\boldsymbol{i}+5 \boldsymbol{j}-2 \boldsymbol{k}$
$\overrightarrow{O B}=-3 \boldsymbol{j}+7 \boldsymbol{k}$
b) $\overrightarrow{A B}=\left(\begin{array}{c}-1 \\ -8 \\ 9\end{array}\right)$

Your turn

The vectors \boldsymbol{a} and \boldsymbol{b} are given by:

$$
\boldsymbol{a}=\left(\begin{array}{c}
3 \\
-2 \\
-5
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{c}
2 \\
0 \\
-4
\end{array}\right)
$$

a) Find:
i) $a+3 b$
ii) $4 a-5 b$
b) State whether these vectors are parallel to $-4 i+16 \boldsymbol{j}$

The vectors \boldsymbol{a} and \boldsymbol{b} are given by:

$$
\boldsymbol{a}=\left(\begin{array}{c}
2 \\
-3 \\
5
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{c}
4 \\
-2 \\
0
\end{array}\right)
$$

a) Find:
i) $4 a+b$
ii) $2 \boldsymbol{a}-3 \boldsymbol{b}$
b) State whether these vectors are parallel to $4 \boldsymbol{i}-5 \boldsymbol{k}$
a)
i) $\left(\begin{array}{c}12 \\ -14 \\ 20\end{array}\right)$
ii) $\left(\begin{array}{c}-8 \\ 0 \\ 10\end{array}\right)$
b)
i) $\left(\begin{array}{c}12 \\ -14 \\ 20\end{array}\right)=3\left(\begin{array}{c}4 \\ -\frac{14}{3} \\ \frac{20}{3}\end{array}\right) \neq k\left(\begin{array}{c}4 \\ 0 \\ -5\end{array}\right) \therefore$ Not parallel
ii) $\left(\begin{array}{c}-8 \\ 0 \\ 10\end{array}\right)=-2\left(\begin{array}{c}4 \\ 0 \\ -5\end{array}\right)=k\left(\begin{array}{c}4 \\ 0 \\ -5\end{array}\right)(k=-2) \therefore$ Parallel

Your turn

Find the magnitude of the vector

$$
\boldsymbol{a}=6 \boldsymbol{i}-8 \boldsymbol{j}+24 \boldsymbol{k}
$$

and hence find $\widehat{\boldsymbol{a}}$, the unit vector in the direction of \boldsymbol{a}.

Find the magnitude of the vector

$$
\boldsymbol{a}=2 \boldsymbol{i}-\boldsymbol{j}+4 \boldsymbol{k}
$$

and hence find $\widehat{\boldsymbol{a}}$, the unit vector in the direction of \boldsymbol{a}.

$$
\widehat{\boldsymbol{a}}=\frac{1}{\sqrt{21}}(2 \boldsymbol{i}-\boldsymbol{j}+4 \boldsymbol{k})
$$

Your turn

Find the angles that the vector

$$
\boldsymbol{a}=\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k}
$$

makes with each of the positive coordinate axes. Give your answers to 1 decimal place.

Find the angles that the vector

$$
\boldsymbol{a}=2 \boldsymbol{i}-3 \boldsymbol{j}-\boldsymbol{k}
$$

makes with each of the positive coordinate axes. Give your answers to 1 decimal place.

$$
\begin{gathered}
\theta_{x}=57.7^{\circ} \\
\theta_{y}=143.3^{\circ} \\
\theta_{z}=105.5^{\circ}
\end{gathered}
$$

Your turn

The points A and B have position vectors $\boldsymbol{i}+5 \boldsymbol{j}+3 \boldsymbol{k}$ and $-2 \boldsymbol{i}+4 \boldsymbol{j}+8 \boldsymbol{k}$ relative to a fixed origin, 0 . Show that $\triangle O A B$ is isosceles.

The points A and B have position vectors $4 \boldsymbol{i}+2 \boldsymbol{j}+7 \boldsymbol{k}$ and $3 \boldsymbol{i}+4 \boldsymbol{j}-\boldsymbol{k}$ relative to a fixed origin, O.
Show that $\triangle O A B$ is isosceles.

$$
\begin{aligned}
|\overrightarrow{A B}| & =\sqrt{69} \\
|\overrightarrow{O A}| & =\sqrt{69} \\
|\overrightarrow{O B}| & =\sqrt{26} \\
|\overrightarrow{A B}| & =|\overrightarrow{O A}| \neq|\overrightarrow{O B}|
\end{aligned}
$$

$\therefore O A B$ is isosceles.

Your turn

$$
\boldsymbol{a}=3 \boldsymbol{i}+2 \boldsymbol{j}+\boldsymbol{k} \text { and } \boldsymbol{b}=\boldsymbol{i}+3 \boldsymbol{j}+5 \boldsymbol{k}
$$ By considering the angles that \boldsymbol{a} and \boldsymbol{b} make with the x-axis, determine the area of $O A B$ where $\overrightarrow{O A}=\boldsymbol{a}$ and $\overrightarrow{O B}=\boldsymbol{b}$.

$$
\boldsymbol{a}=2 \boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k} \text { and } \boldsymbol{b}=\boldsymbol{i}+3 \boldsymbol{j}+2 \boldsymbol{k}
$$

By considering the angles that \boldsymbol{a} and \boldsymbol{b} make with the x-axis, determine the area of $O A B$ where $\overrightarrow{O A}=\boldsymbol{a}$ and $\overrightarrow{O B}=\boldsymbol{b}$.

$$
2.90 \text { (3 sf) }
$$

Your turn

A triangle $P Q R$ is such that $\overrightarrow{P Q}=-2 \boldsymbol{i}+3 \boldsymbol{j}-\boldsymbol{k}$ and $\overrightarrow{Q R}=4 \boldsymbol{i}-3 \boldsymbol{j}-2 \boldsymbol{k}$ Find $<P Q R$ to 1 decimal place

A triangle $P Q R$ is such that
$\overrightarrow{P Q}=2 \boldsymbol{i}-3 \boldsymbol{j}+\boldsymbol{k}$ and $\overrightarrow{Q R}=-4 \boldsymbol{i}+3 \boldsymbol{j}+2 \boldsymbol{k}$ Find $<P Q R$ to 1 decimal place

Your turn

A, B, C and D are the points ($3,-4,-9$), $(1,-7,-3),(1,0,-15)$ and $(7,9,-33)$ respectively.
a) Find $\overrightarrow{A B}$ and $\overrightarrow{D C}$, giving your answers in the form $p \boldsymbol{i}+q \boldsymbol{j}+r \boldsymbol{k}$.
b) Show that the lines $A B$ and $D C$ are parallel and that $\overrightarrow{D C}=3 \overrightarrow{A B}$.
c) Hence describe the quadrilateral $A B C D$.
A, B, C and D are the points $(2,-5,-8)$,
$(1,-7,-3),(0,15,-10)$ and $(2,19,-20)$ respectively.
a) Find $\overrightarrow{A B}$ and $\overrightarrow{D C}$, giving your answers in the form $p \boldsymbol{i}+q \boldsymbol{j}+r \boldsymbol{k}$.
b) Show that the lines $A B$ and $D C$ are parallel and that $\overrightarrow{D C}=2 \overrightarrow{A B}$.
c) Hence describe the quadrilateral $A B C D$.
a)
$\overrightarrow{A B}=-\boldsymbol{i}-2 \boldsymbol{j}+5 \boldsymbol{k}$
$\overrightarrow{D C}=-2 \boldsymbol{i}-4 \boldsymbol{j}+10 \boldsymbol{k}$
b)
$\overrightarrow{D C}=2(-\boldsymbol{i}+2 \boldsymbol{j}+5 \boldsymbol{k})=2 \overrightarrow{A B}$
They are multiples \therefore parallel.
c)
$A B$ and $D C$ are parallel but different in length. Therefore $A B C D$ is a trapezium.
P, Q and R are the points
$(9,3,-4),(-5,5,5)$ and $(0,2,-8)$ respectively.
Find the coordinates of the point S so that PQRS forms a parallelogram.
P, Q and R are the points
$(4,-9,-3),(7,-7,-7)$ and $(8,-2,0)$
respectively.
Find the coordinates of the point S so that $P Q R S$ forms a parallelogram.

$$
S(5,-4,4)
$$

Your turn

Given that
$(q-5) \boldsymbol{i}+2 \boldsymbol{j}-120 \boldsymbol{k}=p \boldsymbol{i}+q \boldsymbol{j}+4 p q r \boldsymbol{k}$, find the values of p, q and r.

Given that
$3 \boldsymbol{i}+(p+2) \boldsymbol{j}+120 \boldsymbol{k}=p \boldsymbol{i}-q \boldsymbol{j}+4 p q r \boldsymbol{k}$, find the values of p, q and r.

$$
p=3, q=-5, r=-2
$$

Your turn

The diagram shows a cuboid whose vertices are O, A, B, C, D, E, F and G. Vectors a, b and c are the position vectors of the vertices A, B and C respectively. Prove that the diagonals $O E$ and $A F$ bisect each other.

The diagram shows a cuboid whose vertices are O, A, B, C, D, E, F and G.
Vectors a, b and c are the position vectors of the vertices A, B and C respectively.
Prove that the diagonals $O E$ and $B G$ bisect each other.

Proof

Convert these vectors to scalar form:

- A force of $\left(\begin{array}{c}1 \\ -3 \\ 4\end{array}\right) N$

Convert these vectors to scalar form:

- A force of $\left(\begin{array}{c}3 \\ 4 \\ -1\end{array}\right) N$

$$
\text { A force of } 5.10 \mathrm{~N}(3 \mathrm{sf})
$$

- An acceleration of $\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right) m s^{-2}$
- A displacement of $\left(\begin{array}{c}-6 \\ 8 \\ -24\end{array}\right) m$
- A velocity of $\left(\begin{array}{c}8 \\ -6 \\ 0\end{array}\right) m s^{-1}$

A particle of mass 0.25 kg is acted on by three forces.

$$
\begin{aligned}
& F_{1}=(\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k}) N \\
& F_{2}=(2 \boldsymbol{i}-4 \boldsymbol{k}) N \\
& F_{3}=(-5 \boldsymbol{i}+3 \boldsymbol{j}+4 \boldsymbol{k}) N
\end{aligned}
$$

a) Find the resultant force R acting on the particle.
b) Find the acceleration of the particle, giving your answer in
the form $(p \boldsymbol{i}+q \boldsymbol{j}+r \boldsymbol{k}) \mathrm{ms}^{-2}$.
c) Find the magnitude of the acceleration.

Given that the particle starts at rest,
d) Find the distance travelled by the particle in the first 3 seconds of its motion.

A particle of mass 0.5 kg is acted on by three forces.

$$
\begin{aligned}
& F_{1}=(2 \boldsymbol{i}-\boldsymbol{j}+2 \boldsymbol{k}) N \\
& F_{2}=(-\boldsymbol{i}+3 \boldsymbol{j}-3 \boldsymbol{k}) N \\
& F_{3}=(4 \boldsymbol{i}-3 \boldsymbol{j}-2 \boldsymbol{k}) N
\end{aligned}
$$

a) Find the resultant force R acting on the particle.
b) Find the acceleration of the particle, giving your answer
in
the form $(p \boldsymbol{i}+q \boldsymbol{j}+r \boldsymbol{k}) \mathrm{ms}^{-2}$.
c) Find the magnitude of the acceleration.

Given that the particle starts at rest,
d) Find the distance travelled by the particle in the first 6 seconds of its motion.
a) $\left(\begin{array}{c}5 \\ -1 \\ -3\end{array}\right) N$
b) $\boldsymbol{a}=(10 \boldsymbol{i}-2 \boldsymbol{j}-6 \boldsymbol{k}) \mathrm{ms}^{-2}$
c) $|\boldsymbol{a}|=\sqrt{140} \mathrm{~ms}^{-2}=11.83 \mathrm{~ms}^{-2}(2 \mathrm{dp})$
d) $36 \sqrt{35} \mathrm{~m}=212.98 \mathrm{~m}$ (2 dp)

