12) Vectors

12.1) 3D coordinates

12.2) Vectors in 3D

12.3) Solving geometric problems

12.4) Application to mechanics

12.1) 3D coordinates

Chapter CONTENTS

Worked example	Your turn
Find the distance from the origin to the point with coordinates (6, 8, 24)	Find the distance from the origin to the point with coordinates $(-3, -4, -12)$
	13
Find the distance from the origin to the point	
with coordinates $(-6, 0, -2)$	

Worked example	Your turn
Find the distance between the points: A(1, 3, 5) and $B(-6, 0, -4)$	Find the distance between the points: E(1, 3, 4) and $B(8, 6, -5)$
	11.8 (1 dp)
C(-1, 0, 1) and $D(0, 0, -3)$	

Worked example	Your turn
The coordinates of A and B are $(3,5,-2)$ and $(3, k, -1)$ respectively. Given that the distance from A to B is $\sqrt{2}$ units, find the possible values of k .	The coordinates of <i>A</i> and <i>B</i> are $(5,3, -8)$ and $(1, k, -3)$ respectively. Given that the distance from <i>A</i> to <i>B</i> is $3\sqrt{10}$ units, find the possible values of <i>k</i> . k = -4 or $k = 10$

12.2) Vectors in 3D

Chapter CONTENTS

Worked example	Your turn
	Consider the points $A(1, 5, -2)$ and B(0, -3, 7). a) Find the position vectors of A and B in ijk notation b) Find the vector \overrightarrow{AB} as a column vector. a) $\overrightarrow{OA} = i + 5j - 2k$ $\overrightarrow{OB} = -3j + 7k$ b) $\overrightarrow{AB} = \begin{pmatrix} -1 \\ -8 \\ 9 \end{pmatrix}$

Worked example	Your turn
The vectors \boldsymbol{a} and \boldsymbol{b} are given by: $\boldsymbol{a} = \begin{pmatrix} 3 \\ -2 \\ -5 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix}$ a) Find: i) $\boldsymbol{a} + 3\boldsymbol{b}$ ii) $4\boldsymbol{a} - 5\boldsymbol{b}$	The vectors \boldsymbol{a} and \boldsymbol{b} are given by: $\boldsymbol{a} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix}$ a) Find: i) $4\boldsymbol{a} + \boldsymbol{b}$ ii) $2\boldsymbol{a} - 3\boldsymbol{b}$
	b) State whether these vectors are parallel to $4i - 5k$ a) $i) \begin{pmatrix} 12 \\ -14 \\ 20 \end{pmatrix}$ $ii) \begin{pmatrix} -8 \\ 0 \\ 10 \end{pmatrix}$ b) $i) \begin{pmatrix} 12 \\ -14 \\ 20 \end{pmatrix} = 3 \begin{pmatrix} 4 \\ -\frac{14}{3} \\ \frac{20}{3} \end{pmatrix} \neq k \begin{pmatrix} 4 \\ 0 \\ -5 \end{pmatrix} \therefore \text{ Not parallel}$ $ii) \begin{pmatrix} -8 \\ 0 \\ 10 \end{pmatrix} = -2 \begin{pmatrix} 4 \\ 0 \\ -5 \end{pmatrix} = k \begin{pmatrix} 4 \\ 0 \\ -5 \end{pmatrix} (k = -2) \therefore \text{ Parallel}$

Worked example	Your turn
Find the magnitude of the vector $\begin{pmatrix} 6\\8\\24 \end{pmatrix}$	Find the magnitude of the vector $\begin{pmatrix} 3\\4\\12 \end{pmatrix}$
	13

Worked example	Your turn
Find the magnitude of the vector a = 6i - 8j + 24k and hence find \hat{a} , the unit vector in the direction of a .	Find the magnitude of the vector a = 2i - j + 4k and hence find \hat{a} , the unit vector in the direction of a .
	$\widehat{\boldsymbol{a}} = \frac{1}{\sqrt{21}} (2\boldsymbol{i} - \boldsymbol{j} + 4\boldsymbol{k})$

Find the magnitude of the vector a = i - 4j + 2kand hence find \hat{a} , the unit vector in the direction of a.

Worked example	Your turn
Find the angles that the vector a = i - 2j + 3k makes with each of the positive coordinate axes. Give your answers to 1 decimal place.	Find the angles that the vector a = 2i - 3j - k makes with each of the positive coordinate axes. Give your answers to 1 decimal place.
	$\begin{array}{l} \theta_x = 57.7^\circ\\ \theta_y = 143.3^\circ\\ \theta_z = 105.5^\circ\end{array}$

Worked example	Your turn
The points A and B have position vectors i + 5j + 3k and $-2i + 4j + 8k$ relative to a fixed origin, O. Show that $\triangle OAB$ is isosceles.	The points A and B have position vectors $4\mathbf{i} + 2\mathbf{j} + 7\mathbf{k}$ and $3\mathbf{i} + 4\mathbf{j} - \mathbf{k}$ relative to a fixed origin, O. Show that $\triangle OAB$ is isosceles.
	$\begin{vmatrix} \overrightarrow{AB} \\ \overrightarrow{OA} \\ = \sqrt{69} \\ \overrightarrow{OB} \\ = \sqrt{26} \\ \overrightarrow{AB} \\ = \overrightarrow{OA} \\ \neq \overrightarrow{OB} \\ \therefore OAB \text{ is isosceles.} \end{vmatrix}$

Worked example	Your turn
a = 3i + 2j + k and $b = i + 3j + 5kBy considering the angles that a and b makewith the x-axis, determine the area of OABwhere \overrightarrow{OA} = a and \overrightarrow{OB} = b.$	a = 2i + j + k and $b = i + 3j + 2kBy considering the angles that a and b makewith the x-axis, determine the area of OABwhere \overrightarrow{OA} = a and \overrightarrow{OB} = b.$
	2.90 (3 sf)

Worked example	Your turn
A triangle PQR is such that $\overrightarrow{PQ} = -2i + 3j - k$ and $\overrightarrow{QR} = 4i - 3j - 2k$ Find $< PQR$ to 1 decimal place	A triangle PQR is such that $\overrightarrow{PQ} = 2i - 3j + k$ and $\overrightarrow{QR} = -4i + 3j + 2k$ Find $< PQR$ to 1 decimal place
	41.9°

12.3) Solving geometric problems Chapter CONTENTS

Worked example	Your turn
 A, B, C and D are the points (3, -4, -9), (1, -7, -3), (1, 0, -15) and (7, 9, -33) respectively. a) Find AB and DC, giving your answers in the form pi + qj + rk. b) Show that the lines AB and DC are parallel and that DC = 3AB. c) Hence describe the quadrilateral ABCD. 	 A, B, C and D are the points (2, -5, -8), (1, -7, -3), (0,15, -10) and (2,19, -20) respectively. a) Find AB and DC, giving your answers in the form pi + qj + rk. b) Show that the lines AB and DC are parallel and that DC = 2AB. c) Hence describe the quadrilateral ABCD.
	a) $\overrightarrow{AB} = -\mathbf{i} - 2\mathbf{j} + 5\mathbf{k}$ $\overrightarrow{DC} = -2\mathbf{i} - 4\mathbf{j} + 10\mathbf{k}$
	b) $\overrightarrow{DC} = 2(-\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}) = 2\overrightarrow{AB}$ They are multiples \therefore parallel.
	c) <i>AB</i> and <i>DC</i> are parallel but different in length. Therefore <i>ABCD</i> is a trapezium.

Worked example	Your turn
P, Q and R are the points	P, Q and R are the points
(9,3, -4), (-5,5,5) and (0, 2, -8)	(4, -9 , -3), (7, -7 , -7) and (8, -2 ,0)
respectively.	respectively.
Find the coordinates of the point S so that	Find the coordinates of the point S so that
PQRS forms a parallelogram.	PQRS forms a parallelogram.

S(5, -4, 4)

Worked example	Your turn
Given that $(q-5)\mathbf{i} + 2\mathbf{j} - 120\mathbf{k} = p\mathbf{i} + q\mathbf{j} + 4pqr\mathbf{k}$, find the values of p, q and r .	Given that $3\mathbf{i} + (p+2)\mathbf{j} + 120\mathbf{k} = p\mathbf{i} - q\mathbf{j} + 4pqr\mathbf{k}$, find the values of p, q and r .
	p = 3, q = -5, r = -2

Worked example	Your turn
The diagram shows a cuboid whose vertices are O, A, B, C, D, E, F and G . Vectors a, b and c are the position vectors of the vertices A, B and C respectively. Prove that the diagonals OE and AF bisect each other.	The diagram shows a cuboid whose vertices are O, A, B, C, D, E, F and G . Vectors a, b and c are the position vectors of the vertices A, B and C respectively. Prove that the diagonals OE and BG bisect each other. Proof

12.4) Application to mechanics

Chapter CONTENTS

Worked example	Your turn
Convert these vectors to scalar form: • A force of $\begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix} N$	Convert these vectors to scalar form: • A force of $\begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix} N$
	A force of 5.10 <i>N</i> (3 sf)
• An acceleration of $\begin{pmatrix} 0\\0\\2 \end{pmatrix}$ ms ⁻²	• An acceleration of $\begin{pmatrix} 1\\0\\1 \end{pmatrix} ms^{-2}$
	An acceleration of 1.41 ms^{-2} (3 sf)
• A displacement of $\begin{pmatrix} -6\\ 8\\ -24 \end{pmatrix} m$	• A displacement of $\begin{pmatrix} 12 \\ -3 \\ 4 \end{pmatrix} m$ A distance of 13 m
• A velocity of $\begin{pmatrix} 8 \\ -6 \\ 0 \end{pmatrix} ms^{-1}$	• A velocity of $\begin{pmatrix} 0\\4\\-3 \end{pmatrix} ms^{-1}$ A speed of 5 ms^{-1}

Worked example	Your turn
A particle of mass 0.25 kg is acted on by three forces. $F_1 = (i - 2j + 3k) N$ $F_2 = (2i - 4k) N$ $F_3 = (-5i + 3j + 4k) N$ a) Find the resultant force <i>R</i> acting on the particle. b) Find the acceleration of the particle, giving your answer in the form $(pi + qj + rk)$ ms ² . c) Find the magnitude of the acceleration. Given that the particle starts at rest, d) Find the distance travelled by the particle in the first 3 seconds of its motion.	A particle of mass 0.5 kg is acted on by three forces. $F_{1} = (2i - j + 2k) N$ $F_{2} = (-i + 3j - 3k) N$ $F_{3} = (4i - 3j - 2k) N$ a) Find the resultant force <i>R</i> acting on the particle. b) Find the acceleration of the particle, giving your answer in the form $(pi + qj + rk)$ ms ² . c) Find the magnitude of the acceleration. Given that the particle starts at rest, d) Find the distance travelled by the particle in the first 6 seconds of its motion. a) $\binom{5}{-1} N$ b) $a = (10i - 2j - 6k)ms^{-2}$ c) $ a = \sqrt{140} ms^{-2} = 11.83 ms^{-2}$ (2 dp) d) $36\sqrt{35} m = 212.98 m$ (2 dp)