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12.1) Gradients of curves Chapter CONTENTS



Worked example Your turn

Find the gradient between the points on the 
curve 𝑦 = 𝑥2:

(5, 25) and (6, 36)

Find the gradient between the points on the 
curve 𝑦 = 𝑥2:

(5, 25) and (5.1, 26.01)

10.1



Worked example Your turn

Find an estimate for the gradient 
of each curve at the point where:
𝑥 = 2
𝑥 = 0
𝑥 = −1

Find an estimate for the gradient 
of each curve at the point where:
𝑥 = 1
𝑥 = −1
𝑥 = −2

4
0

−0.4

Graphs used with permission from DESMOS: https://www.desmos.com/

https://www.desmos.com/


12.2) Finding the derivative Chapter CONTENTS



Worked example Your turn

The point 𝐴 with coordinates 8,64 lies on 
the curve with equation 𝑦 = 𝑥2.
At point 𝐴 the curve has gradient 𝑔.
a) Show that 𝑔 = lim

ℎ→0
16 + ℎ

b) Deduce the value of 𝑔.

The point 𝐴 with coordinates 4,16 lies on 
the curve with equation 𝑦 = 𝑥2.
At point 𝐴 the curve has gradient 𝑔.
a) Show that 𝑔 = lim

ℎ→0
8 + ℎ

b) Deduce the value of 𝑔.

Shown



Worked example Your turn

Prove from first principles that the derivative 
of 3𝑥 is 3

Prove from first principles that the derivative 
of 5𝑥 is 5

𝑓 𝑥 = 5𝑥

𝑓′ 𝑥 = lim
ℎ→0

𝑓 𝑥 + ℎ − 𝑓 𝑥

ℎ

= lim
ℎ→0

5(𝑥 + ℎ) − 5(𝑥)

ℎ

= lim
ℎ→0

5𝑥 + 5ℎ − 5𝑥

ℎ

= lim
ℎ→0

5ℎ

ℎ
= lim

ℎ→0
5

= 5



Worked example Your turn

Prove from first principles that the derivative 
of 3𝑥2 is 6𝑥

Prove from first principles that the derivative 
of 5𝑥2 is 10𝑥

𝑓 𝑥 = 5𝑥2

𝑓′ 𝑥 = lim
ℎ→0

𝑓 𝑥 + ℎ − 𝑓 𝑥

ℎ

= lim
ℎ→0

5 𝑥 + ℎ 2 − 5(𝑥)2

ℎ

= lim
ℎ→0

5𝑥2 + 10𝑥ℎ + 5ℎ2 − 5𝑥2

ℎ

= lim
ℎ→0

10𝑥ℎ + 5ℎ2

ℎ

= lim
ℎ→0

ℎ 10𝑥 + 5ℎ

ℎ
= lim

ℎ→0
(10𝑥 + 5ℎ)

= 10𝑥
[As ℎ → 0, 5ℎ → 0]



Worked example Your turn

Prove from first principles that the derivative 
of 𝑥4 is 4𝑥3.

Prove from first principles that the derivative 
of 𝑥3 is 3𝑥2

𝑓 𝑥 = 𝑥3

𝑓′ 𝑥 = lim
ℎ→0

𝑓 𝑥 + ℎ − 𝑓 𝑥

ℎ

= lim
ℎ→0

𝑥 + ℎ 3 − (𝑥)3

ℎ

= lim
ℎ→0

𝑥3 + 3𝑥2ℎ + 3𝑥ℎ2 + ℎ3 − 𝑥3

ℎ

= lim
ℎ→0

3𝑥2ℎ + 3𝑥ℎ2 + ℎ3

ℎ

= lim
ℎ→0

ℎ 3𝑥2 + 3𝑥ℎ2 + ℎ3

ℎ
= lim

ℎ→0
(3𝑥2 + 3𝑥ℎ + ℎ2)

= 3𝑥2

[As ℎ → 0, 3𝑥ℎ → 0 and ℎ2 → 0]



12.3) Differentiating 𝒙𝒏 Chapter CONTENTS



Worked example Your turn

Differentiate with respect to 𝑥:
𝑥2

𝑥3

𝑥4

Differentiate with respect to 𝑥:
𝑥5

5𝑥4



Worked example Your turn

Differentiate with respect to 𝑥:
3𝑥2

−2𝑥3

5𝑥4

Differentiate with respect to 𝑥:
−3𝑥5

−15𝑥4



Worked example Your turn

Differentiate with respect to 𝑥:
𝑥

3 𝑥

4 𝑥

Differentiate with respect to 𝑥:
5 𝑥

1

5
𝑥−

4
5



Worked example Your turn

Differentiate with respect to 𝑥:
1

𝑥

1

𝑥2

1

𝑥3

Differentiate with respect to 𝑥:
1

𝑥4

−4𝑥−5 = −
4

𝑥5



Worked example Your turn

Differentiate with respect to 𝑥:
2

𝑥

3

4𝑥2

6

5𝑥3

Differentiate with respect to 𝑥:
7

8𝑥4

−
7

2
𝑥−5 = −

7

2𝑥5



Worked example Your turn

Differentiate with respect to 𝑥:
2

3
𝑥

4

7
3 𝑥

5

6
4 𝑥

Differentiate with respect to 𝑥:
3

5
𝑥

3

10
𝑥−

1
2 =

3

10 𝑥



Worked example Your turn

Differentiate with respect to 𝑥:
2

3 𝑥

4

73 𝑥

5

64 𝑥

Differentiate with respect to 𝑥:
3

5 𝑥

−
3

10
𝑥−

3
2 = −

3

10𝑥 𝑥



Worked example Your turn

Differentiate with respect to 𝑥:

36𝑥7

25𝑥7

Differentiate with respect to 𝑥:

16𝑥8

9𝑥8

16𝑥3

24𝑥7



12.4) Differentiating quadratics Chapter CONTENTS



Worked example Your turn

Find the gradient of the curve:
𝑦 = 𝑥2 + 3𝑥 + 2 at (4, 30)

𝑦 = 2𝑥3 − 𝑥 + 5 at (−1, 4)

Find the gradient of the curve:
𝑦 = 3𝑥2 − 2𝑥 + 1 at (−2, 17)

−14



Worked example Your turn

Find the coordinates of the 
point(s) where the gradient is 4:

𝑦 = 𝑥2 − 8𝑥 + 3

𝑦 = 5𝑥2 − 𝑥 + 7

Find the coordinates of the 
point(s) where the gradient is 3:

𝑦 = 3𝑥2 − 9𝑥 + 7
(2, 1)



Worked example Your turn
Let 𝑓 𝑥 = 8𝑥2 − 4𝑥 − 3

a) Find the gradient of 𝑦 = 𝑓 𝑥 at the point 
1

2
, 0

b) Find the coordinates of the point on the graph of 
𝑦 = 𝑓 𝑥 where the gradient is 44.

c) Find the gradient of 𝑦 = 𝑓 𝑥 at the points where 
the curve meets the line 𝑦 = 12𝑥 + 21.

Let 𝑓 𝑥 = 4𝑥2 − 8𝑥 + 3

a) Find the gradient of 𝑦 = 𝑓 𝑥 at the point 
1

2
, 0

b) Find the coordinates of the point on the graph of 
𝑦 = 𝑓 𝑥 where the gradient is 8.

c) Find the gradient of 𝑦 = 𝑓 𝑥 at the points where 
the curve meets the line 𝑦 = 4𝑥 − 5.

a) −4
b) (2, 3)
c) At (1,−1) gradient = 0

At (2, 3) gradient = 8



12.5) Differentiating functions with two or more terms Chapter CONTENTS



Worked example Your turn

Differentiate with respect to 𝑥:

𝑦 = 4𝑥3 + 3𝑥2 + 2𝑥 + 1

𝑓 𝑥 = 𝑥3 − 2𝑥5 − 3𝑥−2 − 2

Differentiate with respect to 𝑥:

𝑦 = 5𝑥4 − 2𝑥7 + 12345 − 𝑥5

𝑑𝑦

𝑑𝑥
= 20𝑥3 − 14𝑥6 − 5𝑥4



Worked example Your turn

Differentiate with respect to 𝑥:

𝑦 = 2 𝑥 + 3𝑥
4
3 −

1

𝑥
+

5

𝑥2

𝑓 𝑥 = 43 𝑥 + 2𝑥
1
4 −

5

𝑥3
+

3

𝑥
+ 6𝑥−2

Differentiate with respect to 𝑥:

𝑦 = 3 𝑥 + 4𝑥
5
3 −

5

𝑥
+

1
3 𝑥

𝑑𝑦

𝑑𝑥
=
3

2
𝑥−

1
2 +

20

3
𝑥
2
3 + 5𝑥−2 −

1

3
𝑥−

4
3



Worked example Your turn

Differentiate with respect to 𝑥:
𝑦 = 𝑥4 𝑥 − 5

𝑓(𝑥) = 𝑥3 𝑥 + 2

Differentiate with respect to 𝑥:

𝑓(𝑥) = 𝑥2 𝑥 − 3

𝑓′ 𝑥 = 3𝑥2 − 6𝑥



Worked example Your turn

Differentiate with respect to 𝑥:

𝑦 =
𝑥 + 3 2

𝑥

𝑓(𝑥) =
3𝑥 − 2 2

5𝑥

Differentiate with respect to 𝑥:

𝑓(𝑥) =
2𝑥 + 3 2

5𝑥

𝑓′ 𝑥 =
4

5
−
9

5
𝑥−2

=
4

5
−

9

5𝑥2



Worked example Your turn

Differentiate with respect to 𝑥:

𝑦 =
𝑥3 + 2

𝑥

𝑓(𝑥) =
𝑥2 − 5

3 𝑥

Differentiate with respect to 𝑥:

𝑓(𝑥) =
𝑥2 + 3

𝑥

𝑓′ 𝑥 =
3

2
𝑥
1
2 −

3

2
𝑥−

3
2



Worked example Your turn

Differentiate with respect to 𝑥:

𝑦 =
𝑥 + 4 3

5𝑥2

Differentiate with respect to 𝑥:

𝑦 =
𝑥 + 2 3

3𝑥2

𝑑𝑦

𝑑𝑥
=
1

3
− 4𝑥−2 −

16

3
𝑥−3

=
1

3
−

4

𝑥2
−

16

3𝑥3



Worked example Your turn

Differentiate with respect to 𝑥:

𝑦 =
3 − 4𝑥

2𝑥2 𝑥

Differentiate with respect to 𝑥:

𝑦 =
1 + 2𝑥

3𝑥 𝑥

𝑑𝑦

𝑑𝑥
= −

1

2
𝑥−

5
2 −

1

3
𝑥−

3
2



12.6) Gradients, tangents and normal Chapter CONTENTS



Worked example Your turn

Find the gradient of the curve:

𝑦 = 8 𝑥 +
48

𝑥
at (4, 28)

𝑦 =
3

𝑥2
−

18

𝑥
at (9,−

161

27
)

Find the gradient of the curve:

𝑦 = 5 𝑥 −
3

𝑥
at (16,

317

16
)

163

256



Worked example Your turn

Find the coordinates of the 
point(s) where the gradient is 10:

𝑦 = 𝑥3 + 6𝑥2 − 11𝑥 + 7

Find the coordinates of the 
point(s) where the gradient is 2:

𝑦 = 𝑥3 − 3𝑥2 − 7𝑥 + 8
(−1, 11) and (3, −13)



Worked example Your turn

For the curve 𝑦 = 𝑓(𝑥),
𝑑𝑦

𝑑𝑥
= 723 + 𝑘𝑥5 + 2𝑘,

where 𝑘 is a constant.
When 𝑥 = −3, the gradient of the 
curve is 241. Find 𝑘.

For the curve 𝑦 = 𝑓(𝑥),
𝑑𝑦

𝑑𝑥
=
3

2
− 𝑘𝑥4 + 𝑘,

where 𝑘 is a constant.
When 𝑥 = −2, the gradient of the 
curve is −6. Find 𝑘.

𝑘 =
1

2



Worked example Your turn

Find the equation of the tangent to the 
curve 𝑦 = 𝑥4 when 𝑥 = 2

Find the equation of the tangent to the 
curve 𝑦 = 𝑥3 when 𝑥 = 2

𝑦 − 8 = 12(𝑥 − 2)
𝑦 = 12𝑥 − 16



Worked example Your turn

Find the equation of the normal to the 
curve 𝑦 = 𝑥4 when 𝑥 = 2

Find the equation of the normal to the 
curve 𝑦 = 𝑥3 when 𝑥 = 2

𝑦 − 8 = −
1

12
(𝑥 − 2)

𝑦 = −
1

12
𝑥 +

49

6



Worked example Your turn
Find the equation of the tangent to the curve 
with equation 
𝑦 = 𝑥3 − 5𝑥2 − 3𝑥 + 2 at the point (5, −13)

Find the equation of the tangent to the curve 
with equation 
𝑦 = 𝑥3 − 3𝑥2 + 2𝑥 − 1 at the point (3, 5)

𝑦 = 11𝑥 − 28



Worked example Your turn
Find the equation of the normal to the curve 
with equation 𝑦 = 3 − 43 𝑥 at the point 
where 𝑥 = 8. 
Give your answer in the form 𝑎𝑥 + 𝑏𝑦 + 𝑐 =
0

Find the equation of the normal to the curve 
with equation 𝑦 = 8 − 3 𝑥 at the point 
where 𝑥 = 4.
Give your answer in the form 𝑎𝑥 + 𝑏𝑦 + 𝑐 =
0

3𝑦 − 4𝑥 + 10 = 0



Worked example Your turn

The point 𝑃 with 𝑥-coordinate 
1

4
lies on the 

curve with equation 𝑦 = 2𝑥2.
The normal to the curve at 𝑃 intersects the 
curve at points 𝑃 and 𝑄.
Find the coordinates of 𝑄

The point 𝑃 with 𝑥-coordinate 
1

2
lies on the 

curve with equation 𝑦 = 4𝑥2.
The normal to the curve at 𝑃 intersects the 
curve at points 𝑃 and 𝑄.
Find the coordinates of 𝑄

−
9

16
,
81

64



12.7) Increasing and decreasing functions Chapter CONTENTS



Worked example Your turn
Show that the function 
𝑓 𝑥 = 𝑥3 − 3𝑥2 + 8𝑥 − 5 is increasing for all 
real values of 𝑥.

Show that the function 
𝑓 𝑥 = 𝑥3 + 6𝑥2 + 21𝑥 + 2 is increasing for 
all real values of 𝑥.

Shown



Worked example Your turn
Find the interval(s) on which the function 
𝑓 𝑥 = 𝑥3 − 6𝑥2 − 135𝑥 + 1 is increasing.

Find the interval(s) on which the function 
𝑓 𝑥 = 𝑥3 + 6𝑥2 − 135𝑥 − 2 is increasing.

𝑥 ≤ −9 and 𝑥 ≥ 5



Worked example Your turn

Show that the function 5 − 𝑥(4𝑥2 + 3) is 
decreasing for all 𝑥 ∈ ℝ

Show that the function 3 + 4𝑥(−𝑥2 − 5) is 
decreasing for all 𝑥 ∈ ℝ

Shown



Worked example Your turn

Find the interval on which the function 
𝑓 𝑥 = 𝑥3 − 3𝑥2 − 9𝑥 − 10 is decreasing.

Find the interval on which the function 
𝑓 𝑥 = 𝑥3 + 3𝑥2 − 9𝑥 + 5 is decreasing.

[−3, 1]



12.8) Second order derivatives Chapter CONTENTS



Worked example Your turn

If 𝑦 = 5𝑥3 −
4

𝑥3
, find 

𝑑2𝑦

𝑑𝑥2
If 𝑦 = 3𝑥5 +

4

𝑥2
, find 

𝑑2𝑦

𝑑𝑥2

𝑑2𝑦

𝑑𝑥2
= 60𝑥3 +

24

𝑥4



Worked example Your turn

If 𝑓 𝑥 = 3 𝑥 +
1

2 𝑥
, find 𝑓′′(𝑥). If 𝑓 𝑥 = 3 𝑥 +

1

2 𝑥
, find 𝑓′′(𝑥).

𝑓′′ 𝑥 = −
3

4
𝑥−

3
2 +

3

8
𝑥−

5
2



12.9) Stationary points Chapter CONTENTS



Worked example Your turn

Find the least value of 
𝑓 𝑥 = 𝑥2 + 6𝑥 − 9

Find the least value of 
𝑓 𝑥 = 𝑥2 − 4𝑥 + 9

5



Worked example Your turn

Find the turning point of
𝑦 = 4 𝑥 − 2𝑥

Find the turning point of
𝑦 = 𝑥 − 𝑥

1

4
,
1

4



Worked example Your turn

Find the coordinates of the 
turning/stationary point(s) of the 
curves by differentiation:

𝑦 = 𝑥2 + 6𝑥 − 2

𝑦 = 2𝑥3 + 6𝑥2 − 4

Find the coordinates of the 
turning/stationary point(s) of the 
curves by differentiation:

𝑦 = 𝑥3 + 3𝑥2 − 4

(−2, 0) and (0,−4)



Worked example Your turn

Find the coordinates of the 
turning/stationary point(s) of the 
curves by differentiation:

𝑦 =
2

3
𝑥3 − 3.5𝑥2 + 3𝑥 + 5

Find the coordinates of the 
turning/stationary point(s) of the 
curves by differentiation:

𝑦 = 𝑥3 +
1

2
𝑥2 − 2𝑥 + 4

(−1,
11

2
) and (

2

3
,
86

27
)



Worked example Your turn

Find the stationary points on the 

curve 𝑦 =
5

3
𝑥3 − 80𝑥

Find the stationary points on the 
curve 𝑦 = 𝑥3 − 12𝑥

(−2, 16) and (2, −16)



Worked example Your turn
Find the stationary point on the curve with 
equation 
𝑦 = 𝑥4 − 108𝑥, and determine whether it is a local 
maximum, a local minimum or a point of inflection.

Find the stationary point on the curve with 
equation 
𝑦 = 𝑥4 − 32𝑥, and determine whether it is a local 
maximum, a local minimum or a point of inflection.

(2, −48) Local minimum



Worked example Your turn
Find the coordinates of the stationary points on 
the curve with equation 𝑦 = 4𝑥3 + 30𝑥2 + 48𝑥 −
3 and use the second derivative to determine their 
nature

Find the coordinates of the stationary points on 
the curve with equation 𝑦 = 2𝑥3 − 15𝑥2 + 24𝑥 +
6 and use the second derivative to determine their 
nature

(1, 17) Local maximum
4,−10 Local minimum



Worked example Your turn

Sketch the graph of 𝑦 =
1

𝑥
+

256

3
𝑥3 labelling the 

stationary points.

Sketch the graph of 𝑦 =
1

𝑥
+ 27𝑥3 labelling the 

stationary points.



12.10) Sketching gradient functions Chapter CONTENTS



Worked example Your turn
Sketch 𝑦 = 𝑓′(𝑥) on the same axes Sketch 𝑦 = 𝑓′(𝑥) on the same axes



Worked example Your turn
Sketch 𝑦 = 𝑓′(𝑥) on the same axes Sketch 𝑦 = 𝑓′(𝑥) on the same axes



Worked example Your turn
A negative cubic has the equation 𝑦 = 𝑓(𝑥).
The curve has stationary points at (4, 1) and 
(−1, 0) and cuts the 𝑥-axis at (6, 0).
Sketch the gradient function, 𝑦 = 𝑓′(𝑥), showing 
the coordinates of any points where the curve cuts 
or meets the 𝑥-axis.

A positive cubic has the equation 𝑦 = 𝑓(𝑥).
The curve has stationary points at (−1, 4) and 
(1, 0) and cuts the 𝑥-axis at (−3, 0).
Sketch the gradient function, 𝑦 = 𝑓′(𝑥), showing 
the coordinates of any points where the curve cuts 
or meets the 𝑥-axis.



12.11) Modelling with differentiation Chapter CONTENTS



Worked example Your turn
Given that the area, 𝐴 𝑐𝑚2, of an expanding circle is 
related to its radius, 𝑟 𝑐𝑚, by the formula 𝐴 = 𝜋𝑟2, find 
the rate of change of area with respect to radius at the 
instant when the radius is 10 𝑐𝑚.

Given that the volume, 𝑉 𝑐𝑚3, of an expanding sphere is 

related to its radius, 𝑟 𝑐𝑚, by the formula 𝑉 =
4

3
𝜋𝑟3, find 

the rate of change of volume with respect to radius at the 
instant when the radius is 5 𝑐𝑚.

314 𝑐𝑚3 per 𝑐𝑚



Worked example Your turn
A cuboid is to be made with volume 81 𝑐𝑚3. 
The cuboid has a rectangular cross-section where the 
length of the rectangle is equal to twice its width, 𝑥 cm.
The volume of the cuboid is 81 𝑐𝑚3.
a) Show that the total length, 𝐿, of the twelve edges of 

the cuboid is given by 𝐿 = 12𝑥 +
162

𝑥2

b) Given that 𝑥 can vary, use differentiation to find the 
maximum or minimum value of 𝐿
c) Justify that the value of 𝐿 you have found is a minimum

A cuboid is to be made from 54m2 of sheet metal. 
The cuboid has a horizontal base and no top.
The height of the cuboid is 𝑥 metres. 
Two of the opposite vertical faces are squares.
a) Show that the volume, V m3, of the tank is given by 

𝑉 = 18𝑥 −
2

3
𝑥3.

b) Given that 𝑥 can vary, use differentiation to find the 
maximum or minimum value of 𝑉.
c) Justify that the value of 𝑉 you have found is a maximum

a) Shown
b) 𝑉 = 36

c) 
𝑑2𝑉

𝑑𝑥2
= −4𝑥 ; 𝑥 = 3,

𝑑2𝑉

𝑑𝑥2
= −12 < 0


