
12) Differentiation

12.1) Gradients of curves
12.2) Finding the derivative
12.3) Differentiating x ⁿ
12.4) Differentiating quadratics
12.5) Differentiating functions with two or more terms
12.6) Gradients, tangents and normal
12.7) Increasing and decreasing functions
12.8) Second order derivatives
12.9) Stationary points
12.10) Sketching gradient functions
12.11) Modelling with differentiation

12.1) Gradients of curves

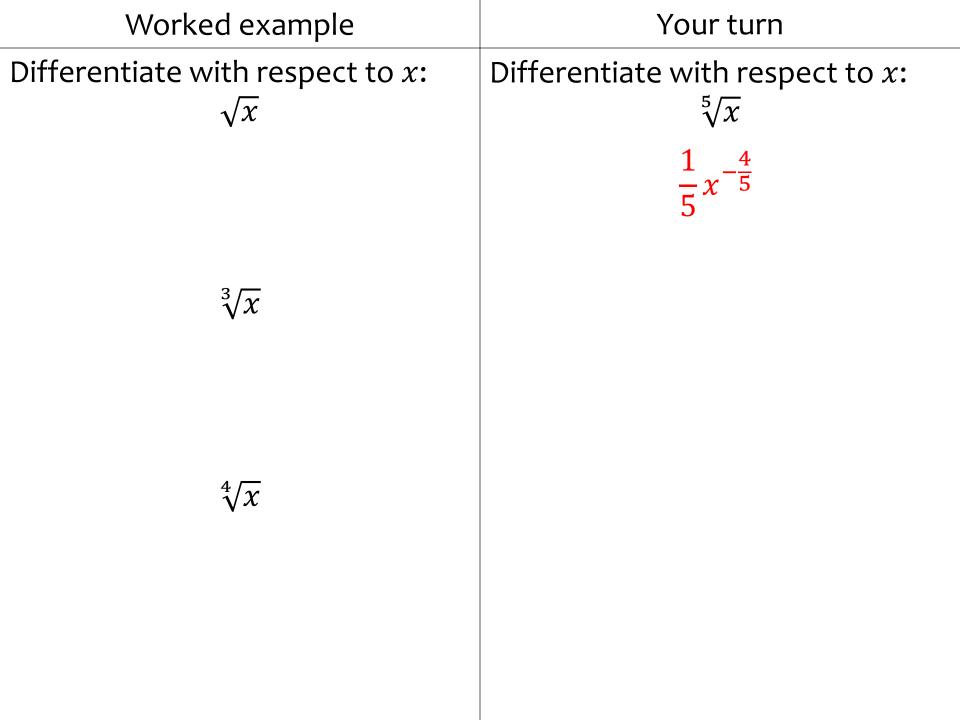
Worked example	Your turn
Find the gradient between the points on the curve $y = x^2$:	Find the gradient between the points on the curve $y = x^2$:
(5, 25) and (6, 36)	(5,25) and (5.1,26.01)
	10.1

Graphs used with permission from DESMOS: <u>https://www.desmos.com/</u>

12.2) Finding the derivative

Worked example	Your turn
The point <i>A</i> with coordinates (8,64) lies on the curve with equation $y = x^2$. At point <i>A</i> the curve has gradient <i>g</i> . a) Show that $g = \lim_{h \to 0} (16 + h)$ b) Deduce the value of <i>g</i> .	The point <i>A</i> with coordinates (4,16) lies on the curve with equation $y = x^2$. At point <i>A</i> the curve has gradient <i>g</i> . a) Show that $g = \lim_{h \to 0} (8 + h)$ b) Deduce the value of <i>g</i> .
	Shown

Worked example	Your turn
Prove from first principles that the derivative of $3x$ is 3	Prove from first principles that the derivative of $5x$ is 5
	f(x) = 5x
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{5(x+h) - 5(x)}{h}$ $= \lim_{h \to 0} \frac{5x + 5h - 5x}{h}$ $= \lim_{h \to 0} \frac{5h}{h}$ $= \lim_{h \to 0} 5$ $= 5$

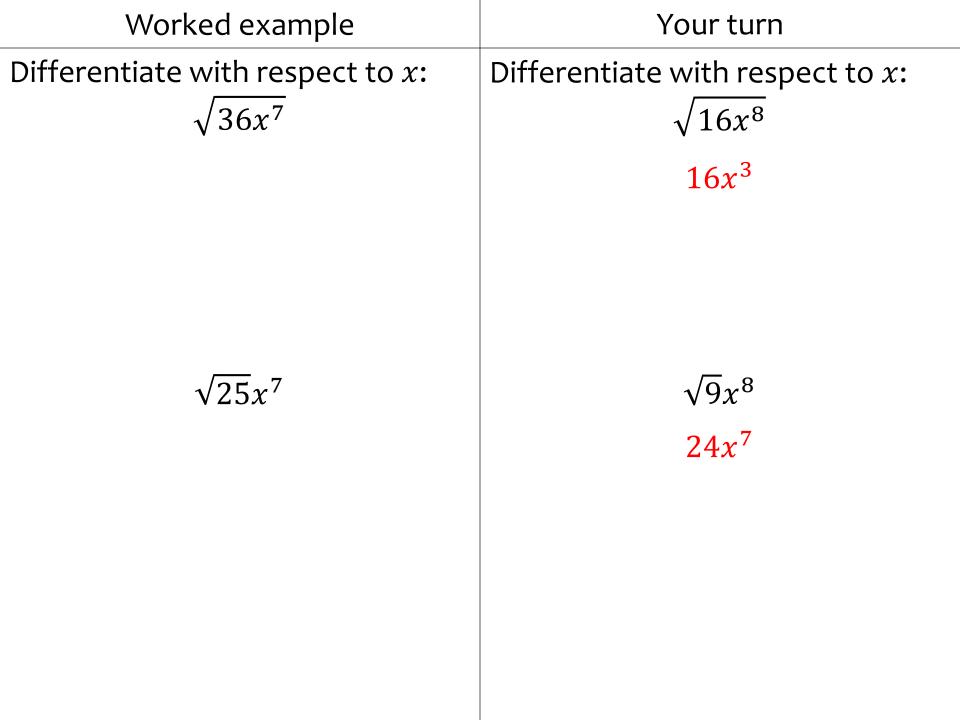

Worked example	Your turn
Prove from first principles that the derivative of $3x^2$ is $6x$	Prove from first principles that the derivative of $5x^2$ is $10x$
	$f(x) = 5x^{2}$ $f(x+h) - f(x)$
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ = $\lim_{h \to 0} \frac{5(x+h)^2 - 5(x)^2}{h}$ = $\lim_{h \to 0} \frac{5x^2 + 10xh + 5h^2 - 5x^2}{h}$ = $\lim_{h \to 0} \frac{10xh + 5h^2}{h}$ = $\lim_{h \to 0} \frac{h(10x + 5h)}{h}$ = $\lim_{h \to 0} (10x + 5h)$ = $10x$
	$[As h \to 0, 5h \to 0]$

Worked example	Your turn
Prove from first principles that the derivative of x^4 is $4x^3$.	Prove from first principles that the derivative of x^3 is $3x^2$
	$f(x) = x^{3}$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{(x+h)^{3} - (x)^{3}}{h}$ $= \lim_{h \to 0} \frac{x^{3} + 3x^{2}h + 3xh^{2} + h^{3} - x^{3}}{h}$ $= \lim_{h \to 0} \frac{3x^{2}h + 3xh^{2} + h^{3}}{h}$
	$= \lim_{h \to 0} \frac{h(3x^2 + 3xh^2 + h^3)}{h}$ = $\lim_{h \to 0} (3x^2 + 3xh + h^2)$ = $3x^2$ [As $h \to 0, 3xh \to 0$ and $h^2 \to 0$]

12.3) Differentiating x^n

Worked example	Your turn
Differentiate with respect to x : x^2	Differentiate with respect to x : x^5
	$5x^4$
<i>x</i> ³	
<i>x</i> ⁴	

Worked example	Your turn
Differentiate with respect to x : $3x^2$	Differentiate with respect to x: $-3x^5$ $-15x^4$
	$-15x^4$
$-2x^{3}$	
$5x^4$	



Worked example	Your turn
Differentiate with respect to x : $\frac{1}{x}$	Differentiate with respect to x: $\frac{1}{4}$
X	$\overline{x^4}$ $-4x^{-5} = -\frac{4}{x^5}$
$\frac{1}{x^2}$	
$\frac{1}{x^3}$	

Worked example	Your turn
Differentiate with respect to x: $\frac{2}{x}$	Differentiate with respect to x: $\frac{7}{8x^4}$
	$-\frac{7}{2}x^{-5} = -\frac{7}{2x^5}$
$\frac{3}{4x^2}$	
$\frac{6}{5x^3}$	

Your turn
Differentiate with respect to <i>x</i> : $\frac{3}{5}\sqrt{x}$
$\frac{3}{10}x^{-\frac{1}{2}} = \frac{3}{10\sqrt{x}}$

Worked example	Your turn
Differentiate with respect to x: $\frac{2}{3\sqrt{x}}$	Differentiate with respect to x: $3 = \frac{3}{5\sqrt{x}}$ $-\frac{3}{10}x^{-\frac{3}{2}} = -\frac{3}{10x\sqrt{x}}$
$\frac{4}{7\sqrt[3]{x}}$	
$\frac{5}{6\sqrt[4]{x}}$	

12.4) Differentiating quadratics

Worked example	Your turn
Find the gradient of the curve: $y = x^2 + 3x + 2$ at (4, 30)	Find the gradient of the curve: $y = 3x^2 - 2x + 1$ at (-2, 17)
	-14
$y = 2x^3 - x + 5$ at $(-1, 4)$	

Worked example	Your turn
Find the coordinates of the point(s) where the gradient is 4: $y = x^2 - 8x + 3$	Find the coordinates of the point(s) where the gradient is 3: $y = 3x^2 - 9x + 7$ (2, 1)
$y = 5x^2 - x + 7$	

Worked example	Your turn
Let $f(x) = 8x^2 - 4x - 3$	Let $f(x) = 4x^2 - 8x + 3$
a) Find the gradient of $y = f(x)$ at the point $\left(\frac{1}{2}, 0\right)$	a) Find the gradient of $y = f(x)$ at the point $\left(\frac{1}{2}, 0\right)$
b) Find the coordinates of the point on the graph of $y = f(x)$ where the gradient is 44.	b) Find the coordinates of the point on the graph of $y = f(x)$ where the gradient is 8.
c) Find the gradient of $y = f(x)$ at the points where the curve meets the line $y = 12x + 21$.	c) Find the gradient of $y = f(x)$ at the points where the curve meets the line $y = 4x - 5$.
	a) -4 b) (2,3) c) At (1,-1) gradient = 0 At (2,3) gradient = 8

12.5) Differentiating functions with two or more terms Chapter CONTENTS

Worked example	Your turn
Differentiate with respect to x:	Differentiate with respect to <i>x</i> :
$y = 4x^3 + 3x^2 + 2x + 1$	$y = 5x^4 - 2x^7 + 12345 - x^5$
	$\frac{dy}{dx} = 20x^3 - 14x^6 - 5x^4$
$f(x) = x^3 - 2x^5 - 3x^{-2} - 2$	

Worked example	Your turn
Differentiate with respect to x:	Differentiate with respect to <i>x</i> :
$y = 2\sqrt{x} + 3x^{\frac{4}{3}} - \frac{1}{x} + \frac{5}{x^2}$	$y = 3\sqrt{x} + 4x^{\frac{5}{3}} - \frac{5}{x} + \frac{1}{\sqrt[3]{x}}$ $\frac{dy}{dx} = \frac{3}{2}x^{-\frac{1}{2}} + \frac{20}{3}x^{\frac{2}{3}} + 5x^{-2} - \frac{1}{3}x^{-\frac{4}{3}}$
	$\frac{dy}{dx} = \frac{3}{2}x^{-\frac{1}{2}} + \frac{20}{3}x^{\frac{2}{3}} + 5x^{-2} - \frac{1}{3}x^{-\frac{4}{3}}$
$f(x) = 4\sqrt[3]{x} + 2x^{\frac{1}{4}} - \frac{5}{x^3} + \frac{3}{\sqrt{x}} + 6x^{-2}$	

Your turn
Differentiate with respect to x: $f(x) = x^{2}(x - 3)$ $f'(x) = 3x^{2} - 6x$

Worked example	Your turn
Differentiate with respect to <i>x</i> : $y = \frac{(x+3)^2}{x}$	Differentiate with respect to <i>x</i> : $f(x) = \frac{(2x+3)^2}{5x}$
$f(x) = \frac{(3x-2)^2}{5x}$	$f(x) = \frac{(2x+3)^2}{5x}$ $f'(x) = \frac{4}{5} - \frac{9}{5}x^{-2}$ $= \frac{4}{5} - \frac{9}{5x^2}$

Worked example	Your turn
Differentiate with respect to <i>x</i> : $y = \frac{x^3 + 2}{\sqrt{x}}$	Differentiate with respect to <i>x</i> : $f(x) = \frac{x^2 + 3}{\sqrt{x}}$
	$f'(x) = \frac{3}{2}x^{\frac{1}{2}} - \frac{3}{2}x^{-\frac{3}{2}}$
$f(x) = \frac{x^2 - 5}{\sqrt[3]{x}}$	

Differentiate with respect to x: $y = \frac{(x+4)^3}{5x^2}$ Differentiate with respect to x: $y = \frac{(x+2)^3}{3x^2}$ $\frac{dy}{dx} = \frac{1}{3} - 4x^{-2} - \frac{16}{3}x^{-3}$ $= \frac{1}{3} - \frac{4}{x^2} - \frac{16}{3x^3}$	Worked example	Your turn
		$y = \frac{(x+2)^3}{3x^2}$ $\frac{dy}{dx} = \frac{1}{3} - 4x^{-2} - \frac{16}{3}x^{-3}$

Worked example	Your turn
Differentiate with respect to <i>x</i> :	Differentiate with respect to x:
$y = \frac{3 - 4x}{2x^2\sqrt{x}}$	$y = \frac{1+2x}{3x\sqrt{x}}$ $\frac{dy}{dx} = -\frac{1}{2}x^{-\frac{5}{2}} - \frac{1}{3}x^{-\frac{3}{2}}$

12.6) Gradients, tangents and normal Chapter CONTENTS

Worked example	Your turn
Find the gradient of the curve: $y = 8\sqrt{x} + \frac{48}{x}$ at (4, 28)	Find the gradient of the curve: $y = 5\sqrt{x} - \frac{3}{x}$ at $(16, \frac{317}{16})$ $\frac{163}{256}$
$y = \frac{3}{x^2} - \frac{18}{\sqrt{x}} \text{ at } (9, -\frac{161}{27})$	

Worked example	Your turn
Find the coordinates of the point(s) where the gradient is 10: $y = x^3 + 6x^2 - 11x + 7$	Find the coordinates of the point(s) where the gradient is 2: $y = x^3 - 3x^2 - 7x + 8$ (-1, 11) and (3, -13)

Worked example	Your turn
For the curve $y = f(x)$,	For the curve $y = f(x)$,
$\frac{dy}{dx} = 723 + kx^5 + 2k,$	$\frac{dy}{dx} = \frac{3}{2} - kx^4 + k,$
where k is a constant.	where k is a constant.
When $x = -3$, the gradient of the	When $x = -2$, the gradient of the
curve is 241. Find k .	curve is -6 . Find k .
	$k = \frac{1}{2}$

Worked example	Your turn
Find the equation of the tangent to the curve $y = x^4$ when $x = 2$	Find the equation of the tangent to the curve $y = x^3$ when $x = 2$
	y - 8 = 12(x - 2) y = 12x - 16

Worked example	Your turn
Find the equation of the normal to the curve $y = x^4$ when $x = 2$	Find the equation of the normal to the curve $y = x^3$ when $x = 2$
	$y - 8 = -\frac{1}{12}(x - 2)$ $y = -\frac{1}{12}x + \frac{49}{6}$

Worked example	Your turn
Find the equation of the tangent to the curve with equation	Find the equation of the tangent to the curve with equation
$y = x^3 - 5x^2 - 3x + 2$ at the point (5, -13)	$y = x^3 - 3x^2 + 2x - 1$ at the point (3, 5)
	y = 11x - 28

Worked example	Your turn
Find the equation of the normal to the curve with equation $y = 3 - 4\sqrt[3]{x}$ at the point where $x = 8$. Give your answer in the form $ax + by + c = 0$	Find the equation of the normal to the curve with equation $y = 8 - 3\sqrt{x}$ at the point where $x = 4$. Give your answer in the form $ax + by + c = 0$ 3y - 4x + 10 = 0

Worked example	Your turn
The point <i>P</i> with <i>x</i> -coordinate $\frac{1}{4}$ lies on the	The point <i>P</i> with <i>x</i> -coordinate $\frac{1}{2}$ lies on the
curve with equation $y = 2x^2$.	curve with equation $y = 4x^2$.
The normal to the curve at <i>P</i> intersects the	The normal to the curve at <i>P</i> intersects the
curve at points <i>P</i> and <i>Q</i> .	curve at points <i>P</i> and <i>Q</i> .
Find the coordinates of Q	Find the coordinates of Q

$$\left(-\frac{9}{16},\frac{81}{64}\right)$$

12.7) Increasing and decreasing functions **Chapter CONTENTS**

Worked example	Your turn
Show that the function $f(x) = x^3 - 3x^2 + 8x - 5$ is increasing for all real values of x.	Show that the function $f(x) = x^3 + 6x^2 + 21x + 2$ is increasing for all real values of x.
	Shown

Worked example	Your turn
Find the interval(s) on which the function $f(x) = x^3 - 6x^2 - 135x + 1$ is increasing.	Find the interval(s) on which the function $f(x) = x^3 + 6x^2 - 135x - 2$ is increasing.
	$x \leq -9$ and $x \geq 5$

Worked example	Your turn
Show that the function $5 - x(4x^2 + 3)$ is decreasing for all $x \in \mathbb{R}$	Show that the function $3 + 4x(-x^2 - 5)$ is decreasing for all $x \in \mathbb{R}$
	Shown

Worked example	Your turn
Find the interval on which the function $f(x) = x^3 - 3x^2 - 9x - 10$ is decreasing.	Find the interval on which the function $f(x) = x^3 + 3x^2 - 9x + 5$ is decreasing.
	[-3,1]

12.8) Second order derivatives

Chapter CONTENTS

Worked example	Your turn
If $y = 5x^3 - \frac{4}{x^3}$, find $\frac{d^2y}{dx^2}$	If $y = 3x^5 + \frac{4}{x^2}$, find $\frac{d^2y}{dx^2}$
	$\frac{d^2y}{dx^2} = 60x^3 + \frac{24}{x^4}$

Worked exampleYour turnIf
$$f(x) = 3\sqrt{x} + \frac{1}{2\sqrt{x'}}$$
 find $f''(x)$.If $f(x) = 3\sqrt{x} + \frac{1}{2\sqrt{x'}}$ find $f''(x)$. $f''(x) = -\frac{3}{4}x^{-\frac{3}{2}} + \frac{3}{8}x^{-\frac{5}{2}}$

12.9) Stationary points

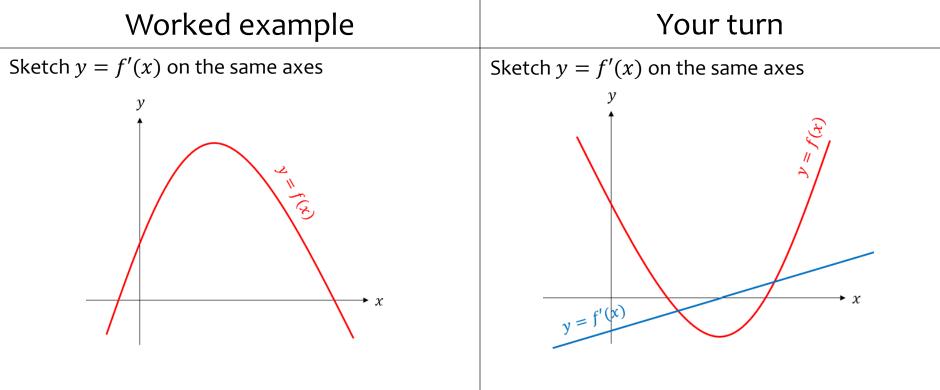
Chapter CONTENTS

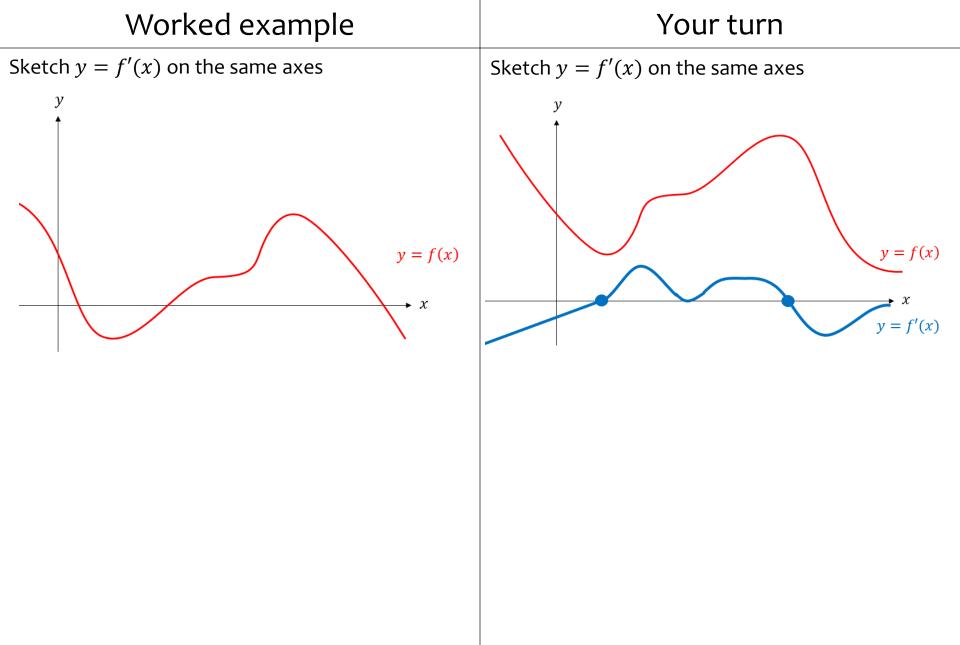
Worked example	Your turn
Find the least value of $f(x) = x^2 + 6x - 9$	Find the least value of $f(x) = x^2 - 4x + 9$ 5

Worked example	Your turn
Find the turning point of $y = \sqrt[4]{x - 2x}$	Find the turning point of $y = \sqrt{x} - x$ $\left(\frac{1}{4}, \frac{1}{4}\right)$

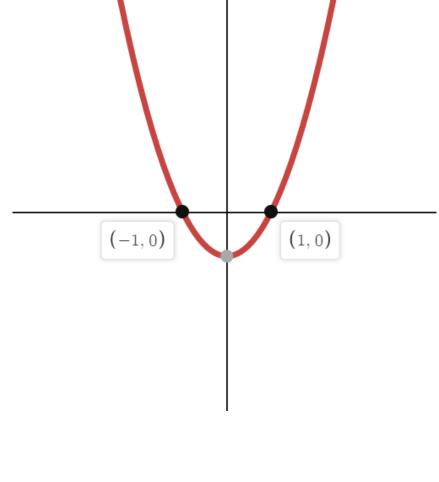
Worked example	Your turn
Find the coordinates of the turning/stationary point(s) of the curves by differentiation: $y = x^2 + 6x - 2$	Find the coordinates of the turning/stationary point(s) of the curves by differentiation: $y = x^3 + 3x^2 - 4$
$y = 2x^3 + 6x^2 - 4$	(-2,0) and (0, -4)

Worked example	Your turn
Find the coordinates of the turning/stationary point(s) of the curves by differentiation: $y = \frac{2}{3}x^3 - 3.5x^2 + 3x + 5$	Find the coordinates of the turning/stationary point(s) of the curves by differentiation: $y = x^3 + \frac{1}{2}x^2 - 2x + 4$ $(-1, \frac{11}{2}) \text{ and } (\frac{2}{3}, \frac{86}{27})$
curves by differentiation:	curves by differentiation: $y = x^{3} + \frac{1}{2}x^{2} - 2x + 4$


Worked example	Your turn
Find the stationary points on the curve $y = \frac{5}{3}x^3 - 80x$	Find the stationary points on the curve $y = x^3 - 12x$ (-2, 16) and (2, -16)


Worked example	Your turn
Worked example Find the stationary point on the curve with equation $y = x^4 - 108x$, and determine whether it is a local maximum, a local minimum or a point of inflection.	Find the stationary point on the curve with equation $y = x^4 - 32x$, and determine whether it is a local maximum, a local minimum or a point of inflection.

Worked example	Your turn
Find the coordinates of the stationary points on the curve with equation $y = 4x^3 + 30x^2 + 48x - 3$ and use the second derivative to determine their nature	Find the coordinates of the stationary points on the curve with equation $y = 2x^3 - 15x^2 + 24x + 6$ and use the second derivative to determine their nature (1, 17) Local maximum (4, -10) Local minimum


Worked example	Your turn
Sketch the graph of $y = \frac{1}{x} + \frac{256}{3}x^3$ labelling the stationary points.	Sketch the graph of $y = \frac{1}{x} + 27x^3$ labelling the stationary points.
	(0.333, 4)
	(-0.333, -4)

12.10) Sketching gradient functions Chapter CONTENTS

Worked example	Your turn
A negative cubic has the equation $y = f(x)$.	A positive cubic has the equation $y = f(x)$.
The curve has stationary points at $(4, 1)$ and $(-1, 0)$ and cuts the x-axis at $(6, 0)$.	The curve has stationary points at $(-1, 4)$ and $(1, 0)$ and cuts the <i>x</i> -axis at $(-3, 0)$.
Sketch the gradient function, $y = f'(x)$, showing the coordinates of any points where the curve cuts or meets the x-axis.	Sketch the gradient function, $y = f'(x)$, showing the coordinates of any points where the curve cuts or meets the <i>x</i> -axis.

12.11) Modelling with differentiation Chapter CONTENTS

Worked example	Your turn
Given that the area, $A \ cm^2$, of an expanding circle is related to its radius, $r \ cm$, by the formula $A = \pi r^2$, find the rate of change of area with respect to radius at the instant when the radius is 10 cm .	Given that the volume, $V cm^3$, of an expanding sphere is related to its radius, $r cm$, by the formula $V = \frac{4}{3}\pi r^3$, find the rate of change of volume with respect to radius at the instant when the radius is 5 cm.
	314 <i>cm</i> ³ per <i>cm</i>

Worked example	Your turn
A cuboid is to be made with volume $81 \ cm^3$. The cuboid has a rectangular cross-section where the length of the rectangle is equal to twice its width, $x \ cm$. The volume of the cuboid is $81 \ cm^3$. a) Show that the total length, L , of the twelve edges of the cuboid is given by $L = 12x + \frac{162}{x^2}$ b) Given that $x \ can \ vary$, use differentiation to find the maximum or minimum value of L c) Justify that the value of $L \ you$ have found is a minimum	A cuboid is to be made from 54m ² of sheet metal. The cuboid has a horizontal base and no top. The height of the cuboid is <i>x</i> metres. Two of the opposite vertical faces are squares. a) Show that the volume, V m ³ , of the tank is given by $V = 18x - \frac{2}{3}x^3$. b) Given that <i>x</i> can vary, use differentiation to find the maximum or minimum value of <i>V</i> . c) Justify that the value of <i>V</i> you have found is a maximum

a) Shown
b)
$$V = 36$$

c) $\frac{d^2V}{dx^2} = -4x$; $x = 3$, $\frac{d^2V}{dx^2} = -12 < 0$