12) Differentiation

12.1) Gradients of curves
12.2) Finding the derivative
12.3) Differentiating x^{n}
12.4) Differentiating quadratics
12.5) Differentiating functions with two or more terms
12.6) Gradients, tangents and normal

12.7) Increasing and decreasing functions

12.8) Second order derivatives
12.9) Stationary points
12.10) Sketching gradient functions
12.11) Modelling with differentiation

Your turn

Find the gradient between the points on the curve $y=x^{2}$:
$(5,25)$ and $(6,36)$

Find the gradient between the points on the curve $y=x^{2}$:
$(5,25)$ and $(5.1,26.01)$
10.1

Find an estimate for the gradient of each curve at the point where: $x=2$
$x=0$
$x=-1$

Find an estimate for the gradient of each curve at the point where:

$$
\begin{array}{lc}
x=1 & 4 \\
x=-1 & 0 \\
x=-2 & -0.4
\end{array}
$$

Your turn

The point A with coordinates $(8,64)$ lies on the curve with equation $y=x^{2}$. At point A the curve has gradient g.
a) Show that $g=\lim _{h \rightarrow 0}(16+h)$
b) Deduce the value of g.

The point A with coordinates $(4,16)$ lies on the curve with equation $y=x^{2}$.
At point A the curve has gradient g.
a) Show that $g=\lim _{h \rightarrow 0}(8+h)$
b) Deduce the value of g.

Your turn

Prove from first principles that the derivative of $3 x$ is 3

Prove from first principles that the derivative of $5 x$ is 5

$$
\begin{aligned}
f(x) & =5 x \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5(x+h)-5(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 x+5 h-5 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 h}{h} \\
& =\lim _{h \rightarrow 0} 5 \\
& =5
\end{aligned}
$$

Prove from first principles that the derivative of $3 x^{2}$ is $6 x$

Prove from first principles that the derivative of $5 x^{2}$ is $10 x$

$$
\begin{aligned}
f(x) & =5 x^{2} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5(x+h)^{2}-5(x)^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 x^{2}+10 x h+5 h^{2}-5 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{10 x h+5 h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(10 x+5 h)}{h} \\
& =\lim _{h \rightarrow 0}(10 x+5 h) \\
& =10 x \\
\text { [As } h & \rightarrow 0,5 h \rightarrow 0]
\end{aligned}
$$

Prove from first principles that the derivative of x^{4} is $4 x^{3}$.

Prove from first principles that the derivative of x^{3} is $3 x^{2}$

$$
\begin{aligned}
f(x) & =x^{3} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{3}-(x)^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h^{2}+h^{3}\right)}{h} \\
& =\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}\right) \\
& =3 x^{2} \\
\text { [As } h & \left.\rightarrow 0,3 x h \rightarrow 0 \text { and } h^{2} \rightarrow 0\right]
\end{aligned}
$$

Differentiate with respect to x :
x^{2}
x^{3}
x^{4}

Differentiate with respect to x : x^{5}
$5 x^{4}$

Differentiate with respect to x :
$3 x^{2}$

$$
-3 x^{5}
$$

$$
-15 x^{4}
$$

$-2 x^{3}$

$$
5 x^{4}
$$

Differentiate with respect to x :
\sqrt{x}
$\sqrt[3]{x}$
$\sqrt[4]{x}$

Differentiate with respect to x :
$\sqrt[5]{x}$
$\frac{1}{5} x^{-\frac{4}{5}}$

Differentiate with respect to x :
$\frac{1}{x}$

$$
\frac{1}{x^{2}}
$$

$$
\frac{1}{x^{3}}
$$

Differentiate with respect to x :

$$
\begin{gathered}
\frac{1}{x^{4}} \\
-4 x^{-5}=-\frac{4}{x^{5}}
\end{gathered}
$$

Differentiate with respect to x :
$\frac{2}{x}$
$\frac{3}{4 x^{2}}$

$$
\frac{6}{5 x^{3}}
$$

Differentiate with respect to x :

$$
\begin{gathered}
\frac{7}{8 x^{4}} \\
-\frac{7}{2} x^{-5}=-\frac{7}{2 x^{5}}
\end{gathered}
$$

Differentiate with respect to x :
$\frac{2}{3} \sqrt{x}$
$\frac{4}{7} \sqrt[3]{x}$
$\frac{5}{6} \sqrt[4]{x}$

Differentiate with respect to x :

$$
\begin{gathered}
\frac{3}{5} \sqrt{x} \\
\frac{3}{10} x^{-\frac{1}{2}}=\frac{3}{10 \sqrt{x}}
\end{gathered}
$$

Differentiate with respect to x :

$$
\begin{aligned}
& \frac{2}{3 \sqrt{x}} \\
& \frac{4}{7 \sqrt[3]{x}} \\
& \frac{5}{6 \sqrt[4]{x}}
\end{aligned}
$$

Differentiate with respect to x :

$$
\begin{gathered}
\frac{3}{5 \sqrt{x}} \\
-\frac{3}{10} x^{-\frac{3}{2}}=-\frac{3}{10 x \sqrt{x}}
\end{gathered}
$$

Your turn

Differentiate with respect to x :
$\sqrt{36 x^{7}}$
$\sqrt{25} x^{7}$

Differentiate with respect to x :

$$
\begin{gathered}
\sqrt{16 x^{8}} \\
16 x^{3}
\end{gathered}
$$

$\sqrt{9} x^{8}$
$24 x^{7}$

Your turn

Find the gradient of the curve:

$$
y=x^{2}+3 x+2 \text { at }(4,30)
$$

Find the gradient of the curve:

$$
y=3 x^{2}-2 x+1 \text { at }(-2,17)
$$

$$
-14
$$

Find the coordinates of the point(s) where the gradient is 4 :

$$
y=x^{2}-8 x+3
$$

Find the coordinates of the point(s) where the gradient is 3 :

$$
y=3 x^{2}-9 x+7
$$

$(2,1)$

Your turn

Let $f(x)=8 x^{2}-4 x-3$
a) Find the gradient of $y=f(x)$ at the point $\left(\frac{1}{2}, 0\right)$
b) Find the coordinates of the point on the graph of $y=f(x)$ where the gradient is 44 .
c) Find the gradient of $y=f(x)$ at the points where the curve meets the line $y=12 x+21$.

Let $f(x)=4 x^{2}-8 x+3$
a) Find the gradient of $y=f(x)$ at the point $\left(\frac{1}{2}, 0\right)$
b) Find the coordinates of the point on the graph of $y=f(x)$ where the gradient is 8.
c) Find the gradient of $y=f(x)$ at the points where the curve meets the line $y=4 x-5$.
a) -4
b) $(2,3)$
c) At $(1,-1)$ gradient $=0$ At $(2,3)$ gradient $=8$

Differentiate with respect to x :
Differentiate with respect to x :

$$
\begin{gathered}
y=5 x^{4}-2 x^{7}+12345-x^{5} \\
\frac{d y}{d x}=20 x^{3}-14 x^{6}-5 x^{4}
\end{gathered}
$$

Differentiate with respect to x :
Differentiate with respect to x :

$$
\begin{aligned}
& y=3 \sqrt{x}+4 x^{\frac{5}{3}}-\frac{5}{x}+\frac{1}{\sqrt[3]{x}} \\
& \frac{d y}{d x}=\frac{3}{2} x^{-\frac{1}{2}}+\frac{20}{3} x^{\frac{2}{3}}+5 x^{-2}-\frac{1}{3} x^{-\frac{4}{3}}
\end{aligned}
$$

Differentiate with respect to x :

$$
y=x^{4}(x-5)
$$

$$
f(x)=x^{3}(x+2)
$$

Differentiate with respect to x :

$$
\begin{aligned}
& f(x)=x^{2}(x-3) \\
& f^{\prime}(x)=3 x^{2}-6 x
\end{aligned}
$$

Differentiate with respect to x :

$$
\begin{aligned}
y & =\frac{(x+3)^{2}}{x} \\
f(x) & =\frac{(3 x-2)^{2}}{5 x}
\end{aligned}
$$

Differentiate with respect to x :

$$
\begin{aligned}
f(x) & =\frac{(2 x+3)^{2}}{5 x} \\
f^{\prime}(x) & =\frac{4}{5}-\frac{9}{5} x^{-2} \\
& =\frac{4}{5}-\frac{9}{5 x^{2}}
\end{aligned}
$$

Differentiate with respect to x :

$$
y=\frac{x^{3}+2}{\sqrt{x}}
$$

$$
f(x)=\frac{x^{2}-5}{\sqrt[3]{x}}
$$

Differentiate with respect to x :

$$
y=\frac{(x+4)^{3}}{5 x^{2}}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\frac{(x+2)^{3}}{3 x^{2}} \\
\frac{d y}{d x}=\frac{1}{3}-4 x^{-2}-\frac{16}{3} x^{-3} \\
=\frac{1}{3}-\frac{4}{x^{2}}-\frac{16}{3 x^{3}}
\end{gathered}
$$

Your turn

Differentiate with respect to x :

$$
y=\frac{3-4 x}{2 x^{2} \sqrt{x}}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\frac{1+2 x}{3 x \sqrt{x}} \\
\frac{d y}{d x}=-\frac{1}{2} x^{-\frac{5}{2}}-\frac{1}{3} x^{-\frac{3}{2}}
\end{gathered}
$$

Find the gradient of the curve:

$$
y=8 \sqrt{x}+\frac{48}{x} \text { at }(4,28)
$$

$$
y=\frac{3}{x^{2}}-\frac{18}{\sqrt{x}} \text { at }\left(9,-\frac{161}{27}\right)
$$

Find the gradient of the curve:

$$
\begin{gathered}
y=5 \sqrt{x}-\frac{3}{x} \text { at }\left(16, \frac{317}{16}\right) \\
\frac{163}{256}
\end{gathered}
$$

Find the coordinates of the point(s) where the gradient is 10 :
$y=x^{3}+6 x^{2}-11 x+7$

Find the coordinates of the point(s) where the gradient is 2 :
$y=x^{3}-3 x^{2}-7 x+8$ $(-1,11)$ and $(3,-13)$

Your turn

For the curve $y=f(x)$,

$$
\frac{d y}{d x}=723+k x^{5}+2 k
$$

where k is a constant.
When $x=-3$, the gradient of the curve is 241 . Find k.

For the curve $y=f(x)$,

$$
\frac{d y}{d x}=\frac{3}{2}-k x^{4}+k
$$

where k is a constant.
When $x=-2$, the gradient of the curve is -6 . Find k.

$$
k=\frac{1}{2}
$$

Your turn

Find the equation of the tangent to the curve $y=x^{4}$ when $x=2$

Find the equation of the tangent to the curve $y=x^{3}$ when $x=2$

$$
\begin{gathered}
y-8=12(x-2) \\
y=12 x-16
\end{gathered}
$$

Find the equation of the normal to the curve $y=x^{4}$ when $x=2$

Find the equation of the normal to the curve $y=x^{3}$ when $x=2$

$$
\begin{gathered}
y-8=-\frac{1}{12}(x-2) \\
y=-\frac{1}{12} x+\frac{49}{6}
\end{gathered}
$$

Your turn

Find the equation of the tangent to the curve with equation $y=x^{3}-5 x^{2}-3 x+2$ at the point $(5,-13)$

Find the equation of the tangent to the curve with equation $y=x^{3}-3 x^{2}+2 x-1$ at the point $(3,5)$

$$
y=11 x-28
$$

Your turn

Find the equation of the normal to the curve with equation $y=3-4 \sqrt[3]{x}$ at the point where $x=8$.
Give your answer in the form $a x+b y+c=$ 0

Find the equation of the normal to the curve with equation $y=8-3 \sqrt{x}$ at the point where $x=4$.
Give your answer in the form $a x+b y+c=$ 0

$$
3 y-4 x+10=0
$$

Your turn

The point P with x-coordinate $\frac{1}{4}$ lies on the curve with equation $y=2 x^{2}$.
The normal to the curve at P intersects the curve at points P and Q.
Find the coordinates of Q

The point P with x-coordinate $\frac{1}{2}$ lies on the curve with equation $y=4 x^{2}$.
The normal to the curve at P intersects the curve at points P and Q.
Find the coordinates of Q

$$
\left(-\frac{9}{16}, \frac{81}{64}\right)
$$

12.7) Increasing and decreasing functions Chapter CONTENTS

Show that the function $f(x)=x^{3}-3 x^{2}+8 x-5$ is increasing for all real values of x.

Show that the function
$f(x)=x^{3}+6 x^{2}+21 x+2$ is increasing for all real values of x.

Shown

Find the interval(s) on which the function $f(x)=x^{3}-6 x^{2}-135 x+1$ is increasing.

Find the interval(s) on which the function $f(x)=x^{3}+6 x^{2}-135 x-2$ is increasing.

$$
x \leq-9 \text { and } x \geq 5
$$

Your turn

Show that the function $5-x\left(4 x^{2}+3\right)$ is decreasing for all $x \in \mathbb{R}$

Show that the function $3+4 x\left(-x^{2}-5\right)$ is decreasing for all $x \in \mathbb{R}$

Shown

Your turn

Find the interval on which the function $f(x)=x^{3}-3 x^{2}-9 x-10$ is decreasing.

Find the interval on which the function $f(x)=x^{3}+3 x^{2}-9 x+5$ is decreasing.

$$
[-3,1]
$$

Your turn

If $y=5 x^{3}-\frac{4}{x^{3}}$, find $\frac{d^{2} y}{d x^{2}}$
If $y=3 x^{5}+\frac{4}{x^{2}}$, find $\frac{d^{2} y}{d x^{2}}$

$$
\frac{d^{2} y}{d x^{2}}=60 x^{3}+\frac{24}{x^{4}}
$$

Your turn

If $f(x)=3 \sqrt{x}+\frac{1}{2 \sqrt{x}}$, find $f^{\prime \prime}(x)$.
If $f(x)=3 \sqrt{x}+\frac{1}{2 \sqrt{x}}$, find $f^{\prime \prime}(x)$.

$$
f^{\prime \prime}(x)=-\frac{3}{4} x^{-\frac{3}{2}}+\frac{3}{8} x^{-\frac{5}{2}}
$$

12.9) Stationary points

Find the least value of

$$
f(x)=x^{2}+6 x-9
$$

Find the least value of

$$
f(x)=x^{2}-4 x+9
$$

5

Find the turning point of

$$
y=\sqrt[4]{x}-2 x
$$

Find the turning point of

$$
y=\sqrt{x}-x
$$

$$
\left(\frac{1}{4}, \frac{1}{4}\right)
$$

Find the coordinates of the turning/stationary point(s) of the curves by differentiation:

$$
y=x^{2}+6 x-2
$$

$$
y=2 x^{3}+6 x^{2}-4
$$

Find the coordinates of the turning/stationary point(s) of the curves by differentiation:

$$
\begin{gathered}
y=x^{3}+3 x^{2}-4 \\
(-2,0) \text { and }(0,-4)
\end{gathered}
$$

Find the coordinates of the turning/stationary point(s) of the curves by differentiation:

$$
y=\frac{2}{3} x^{3}-3.5 x^{2}+3 x+5
$$

Find the coordinates of the turning/stationary point(s) of the curves by differentiation:

$$
\begin{gathered}
y=x^{3}+\frac{1}{2} x^{2}-2 x+4 \\
\left(-1, \frac{11}{2}\right) \text { and }\left(\frac{2}{3}, \frac{86}{27}\right)
\end{gathered}
$$

Find the stationary points on the curve $y=\frac{5}{3} x^{3}-80 x$

Find the stationary points on the curve $y=x^{3}-12 x$

$$
(-2,16) \text { and }(2,-16)
$$

Your turn

Find the stationary point on the curve with equation
$y=x^{4}-108 x$, and determine whether it is a local maximum, a local minimum or a point of inflection.

Find the stationary point on the curve with equation
$y=x^{4}-32 x$, and determine whether it is a local maximum, alocalminimum or a.point of inflection.

Your turn

Find the coordinates of the stationary points on the curve with equation $y=4 x^{3}+30 x^{2}+48 x-$ 3 and use the second derivative to determine their nature

Find the coordinates of the stationary points on the curve with equation $y=2 x^{3}-15 x^{2}+24 x+$ 6 and use the second derivative to determine their nature
$(1,17)$ Local maximum
$(4,-10)$ Local minimum

Your turn

Sketch the graph of $y=\frac{1}{x}+\frac{256}{3} x^{3}$ labelling the stationary points.

12.10) Sketching gradient functions Chapter CONTENTS

Your turn

Sketch $y=f^{\prime}(x)$ on the same axes

Sketch $y=f^{\prime}(x)$ on the same axes

Worked example
Sketch $y=f^{\prime}(x)$ on the same axes

Your turn

Sketch $y=f^{\prime}(x)$ on the same axes

Worked example

Your turn

A negative cubic has the equation $y=f(x)$. The curve has stationary points at $(4,1)$ and $(-1,0)$ and cuts the x-axis at $(6,0)$.
Sketch the gradient function, $y=f^{\prime}(x)$, showing the coordinates of any points where the curve cuts or meets the x-axis.

A positive cubic has the equation $y=f(x)$. The curve has stationary points at $(-1,4)$ and $(1,0)$ and cuts the x-axis at $(-3,0)$.
Sketch the gradient function, $y=f^{\prime}(x)$, showing the coordinates of any points where the curve cuts or meets the x-axis.

12.11) Modelling with differentiation Chapter CONTENTS

Your turn

Given that the area, $A \mathrm{~cm}^{2}$, of an expanding circle is related to its radius, $r \mathrm{~cm}$, by the formula $A=\pi r^{2}$, find the rate of change of area with respect to radius at the instant when the radius is 10 cm .

Given that the volume, $V \mathrm{~cm}^{3}$, of an expanding sphere is related to its radius, $r c m$, by the formula $V=\frac{4}{3} \pi r^{3}$, find the rate of change of volume with respect to radius at the instant when the radius is 5 cm .
$314 \mathrm{~cm}^{3}$ per cm

Worked example

Your turn

A cuboid is to be made with volume $81 \mathrm{~cm}^{3}$. The cuboid has a rectangular cross-section where the length of the rectangle is equal to twice its width, $x \mathrm{~cm}$. The volume of the cuboid is $81 \mathrm{~cm}^{3}$.
a) Show that the total length, L, of the twelve edges of the cuboid is given by $L=12 x+\frac{162}{x^{2}}$
b) Given that x can vary, use differentiation to find the maximum or minimum value of L
c) Justify that the value of L you have found is a minimum

A cuboid is to be made from $54 \mathrm{~m}^{2}$ of sheet metal.
The cuboid has a horizontal base and no top.
The height of the cuboid is x metres.
Two of the opposite vertical faces are squares.
a) Show that the volume, $\mathrm{V} \mathrm{m}^{3}$, of the tank is given by

$$
V=18 x-\frac{2}{3} x^{3}
$$

b) Given that x can vary, use differentiation to find the maximum or minimum value of V.
c) Justify that the value of V you have found is a maximum
a) Shown
b) $V=36$
c) $\frac{d^{2} V}{d x^{2}}=-4 x ; x=3, \frac{d^{2} V}{d x^{2}}=-12<0$

