11.11) Modelling with differential equations

The rate of increase of a human population (with population H, where time is t) is proportional to the current population. Form a differential equation, and find its general solution.

The rate of increase of a rabbit population (with population P, where time is t) is proportional to the current population. Form a differential equation, and find its general solution.

$$
P=A e^{k t}
$$

Your turn

The rate of increase of a population P of microorganisms at time t, in hours, is given by

$$
\frac{d P}{d t}=6 P, k>0
$$

Initially the population was of size 4.
a) Find a model for P in the form $P=A e^{6 t}$
b) Find, to the nearest hundred, the size of the population at time $t=4$
c) Find the time at which the population will be 10000 times its starting value.
d) State one limitation of this model for large values of t

The rate of increase of a population P of microorganisms at time t, in hours, is given by

$$
\frac{d P}{d t}=3 P, k>0
$$

Initially the population was of size 8 .
a) Find a model for P in the form $P=A e^{3 t}$
b) Find, to the nearest hundred, the size of the population at time $t=2$
c) Find the time at which the population will be 1000 times its starting value.
d) State one limitation of this model for large values of t
a) $P=8 e^{3 t}$
b) 3200
c) 2.3 hours $=2$ hours 18 minutes
d) The population could not increase in this way forever due to limitations such as available food or space

Worked example

Your turn

Water in a manufacturing plant is held in a large cylindrical tank of diameter 10m. Water flows out of the bottom of the tank through a tap at a rate proportional to the cube root of the volume.
(a) Show that t minutes after the tap is opened, $\frac{d h}{d t}=-k \sqrt[3]{h}$ for some constant k.
(b) Show that the general solution of this differential
equation may be written $h=(P-Q t)^{\frac{3}{2}}$, where P and Q are constants.
Initially the height of the water is 64 m .21 minutes later, the height is 27 m .
(c) Find the values of the constants P and Q.
(d) Find the time in minutes when the water is at a depth of 8 m .

Water in a manufacturing plant is held in a large cylindrical tank of diameter 20m. Water flows out of the bottom of the tank through a tap at a rate proportional to the cube root of the volume.
(a) Show that t minutes after the tap is opened, $\frac{d h}{d t}=-k \sqrt[3]{h}$ for some constant k.
(b) Show that the general solution of this differential equation may be written $h=(P-Q t)^{\frac{3}{2}}$, where P and Q are constants.
Initially the height of the water is 27 m .10 minutes later, the height is 8 m .
(c) Find the values of the constants P and Q.
(d) Find the time in minutes when the water is at a depth of 1 m .
a) Shown: $k=\frac{k \sqrt[3]{100 \pi h}}{100 \pi}$
b) Shown
c) $P=9, Q=\frac{1}{2}$
d) 16 minutes

Worked example

Your turn

Liquid is pouring into a container at a constant rate of $40 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ and is leaking out at a rate proportional to the volume of liquid already in the container.
The volume, $V \mathrm{~cm}^{3}$, of liquid in the container at time t seconds is satisfied by the differential equation

$$
\frac{d V}{d t}=40-k V
$$

The container is initially empty.
a) By solving the differential equation show that

$$
V=A+B e^{-k t}
$$

giving the values of A and B in terms of k
b) Given also that $\frac{d V}{d t}=20$ at $t=10$, find the volume of liquid in the container 20 seconds after the start.

Liquid is pouring into a container at a constant rate of $20 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ and is leaking out at a rate proportional to the volume of liquid already in the container.
The volume, $V \mathrm{~cm}^{3}$, of liquid in the container at time t seconds is satisfied by the differential equation

$$
\frac{d V}{d t}=20-k V
$$

The container is initially empty.
a) By solving the differential equation show that

$$
V=A+B e^{-k t}
$$

giving the values of A and B in terms of k
b) Given also that $\frac{d V}{d t}=10$ at $t=5$, find the volume of liquid in the container 10 seconds after the start.
a) $V=\frac{20}{k}-\frac{20}{k} e^{-k t}$
b) $V=\frac{75}{\ln 2}=108 \mathrm{~cm}^{3}(3 \mathrm{sf})$

Worked example

Your turn

A fluid reservoir initially containers 10000 litres of unpolluted fluid.
The reservoir is leaking at a constant rate of 200 litres per hour and it is suspected that contaminated fluid flows into the reservoir at a constant rate of 300 litres per day. The contaminated fluid contains 4 grams of contaminant in every litre of fluid.
It is assumed that the contaminant instantly disperses throughout the reservoir upon entry. Given that there are x grams of contaminant in the reservoir after t days,
(a) Show that the situation can be modelled by the differential equation

$$
\frac{d x}{d t}=1200-\frac{2 x}{100+t}
$$

(b) Hence find the number of grams of contaminant in the tank after 7 days.
(c) Explain how the model could be refined.

A storage tank initially containers 1000 litres of pure water.
Liquid is removed from the tank at a constant rate of 30 litres per hour and a chemical solution is added to the tank at a constant rate of 40 litres per hour.
The chemical solution contains 4 grams of copper sulphate per litre of water.
It is assumed that the copper suphate instantly disperses throughout the tank on entry.
Given that there are x grams of copper sulphate in the tank after t hours,
(a) Show that the situation can be modelled by the differential equation

$$
\frac{d x}{d t}=160-\frac{3 x}{100+t}
$$

(b) Hence find the number of grams of copper sulphate in the tank after 6 hours.
(c) Explain how the model could be refined.
(a) Shown
(b) $882 \mathrm{~g}(3 \mathrm{sf})$
(c) The model could be refined to take into account the fact that the cupper sulphate does not disperse immediately on entering the tank.

