11.11) Modelling with differential equations

Worked example	Your turn
The rate of increase of a human population	The rate of increase of a rabbit population
(with population <i>H</i> , where time is <i>t</i>) is	(with population <i>P</i> , where time is <i>t</i>) is
proportional to the current population.	proportional to the current population.
Form a differential equation, and find its	Form a differential equation, and find its
general solution.	general solution.

 $P = Ae^{kt}$

Worked example	Your turn
The rate of increase of a population <i>P</i> of microorganisms at time <i>t</i> , in hours, is given by $\frac{dP}{dt} = 6P, k > 0$ Initially the population was of size 4. a) Find a model for <i>P</i> in the form $P = Ae^{6t}$ b) Find, to the nearest hundred, the size of the population at time $t = 4$ c) Find the time at which the population will be 10000 times its starting value. d) State one limitation of this model for large values of <i>t</i>	The rate of increase of a population <i>P</i> of microorganisms at time <i>t</i> , in hours, is given by $\frac{dP}{dt} = 3P, k > 0$ Initially the population was of size 8. a) Find a model for <i>P</i> in the form $P = Ae^{3t}$ b) Find, to the nearest hundred, the size of the population at time $t = 2$ c) Find the time at which the population will be 1000 times its starting value. d) State one limitation of this model for large values of <i>t</i>
	 a) P = 8e^{3t} b) 3200 c) 2.3 hours = 2 hours 18 minutes d) The population could not increase in this way forever due to limitations such as available food or space

Worked example	Your turn
Water in a manufacturing plant is held in a large cylindrical tank of diameter 10m. Water flows out of the bottom of the tank through a tap at a rate proportional to the cube root of the volume. (a) Show that <i>t</i> minutes after the tap is opened, $\frac{dh}{dt} = -k\sqrt[3]{h}$ for some constant <i>k</i> . (b) Show that the general solution of this differential	Water in a manufacturing plant is held in a large cylindrical tank of diameter 20m. Water flows out of the bottom of the tank through a tap at a rate proportional to the cube root of the volume. (a) Show that t minutes after the tap is opened, $\frac{dh}{dt} = -k\sqrt[3]{h}$ for some constant k. (b) Show that the general solution of this differential
 are constants. Initially the height of the water is 64m. 21 minutes later, the height is 27m. (c) Find the values of the constants <i>P</i> and <i>Q</i>. (d) Find the time in minutes when the water is at a depth of 8m. 	 are constants. Initially the height of the water is 27m. 10 minutes later, the height is 8m. (c) Find the values of the constants <i>P</i> and <i>Q</i>. (d) Find the time in minutes when the water is at a depth of 1m.
	a) Shown: $k = \frac{k \sqrt[3]{100\pi h}}{100\pi}$ b) Shown c) $P = 9, Q = \frac{1}{2}$ d) 16 minutes

Worked example	Your turn
Liquid is pouring into a container at a constant rate of 40 cm ³ s ⁻¹ and is leaking out at a rate proportional to the volume of liquid already in the container. The volume, $V cm^3$, of liquid in the container at time t seconds is satisfied by the differential equation $\frac{dV}{dt} = 40 - kV$ The container is initially empty. a) By solving the differential equation show that $V = A + Be^{-kt}$ giving the values of A and B in terms of k b) Given also that $\frac{dV}{dt} = 20$ at $t = 10$, find the volume of liquid in the container 20 seconds after the start.	Liquid is pouring into a container at a constant rate of $20 \ cm^3 \ s^{-1}$ and is leaking out at a rate proportional to the volume of liquid already in the container. The volume, $V \ cm^3$, of liquid in the container at time t seconds is satisfied by the differential equation $\frac{dV}{dt} = 20 - kV$ The container is initially empty. a) By solving the differential equation show that $V = A + Be^{-kt}$ giving the values of A and B in terms of k b) Given also that $\frac{dV}{dt} = 10$ at $t = 5$, find the volume of liquid in the container 10 seconds after the start. a) $V = \frac{20}{k} - \frac{20}{k}e^{-kt}$ b) $V = \frac{75}{\ln 2} = 108 \ cm^3$ (3 sf)

Worked example	Your turn
A fluid reservoir initially containers 10000 litres of unpolluted fluid. The reservoir is leaking at a constant rate of 200 litres per hour and it is suspected that contaminated fluid flows into the reservoir at a constant rate of 300 litres per day. The contaminated fluid contains 4 grams of contaminant in every litre of fluid. It is assumed that the contaminant instantly disperses throughout the reservoir upon entry. Given that there are x grams of contaminant in the reservoir after t days, (a) Show that the situation can be modelled by the differential equation $\frac{dx}{dt} = 1200 - \frac{2x}{100 + t}$ (b) Hence find the number of grams of contaminant in the tank after 7 days.	A storage tank initially containers 1000 litres of pure water. Liquid is removed from the tank at a constant rate of 30 litres per hour and a chemical solution is added to the tank at a constant rate of 40 litres per hour. The chemical solution contains 4 grams of copper sulphate per litre of water. It is assumed that the copper suphate instantly disperses throughout the tank on entry. Given that there are x grams of copper sulphate in the tank after t hours, (a) Show that the situation can be modelled by the differential equation $\frac{dx}{dt} = 160 - \frac{3x}{100 + t}$ (b) Hence find the number of grams of copper sulphate in the tank after 6 hours. (c) Explain how the model could be refined.
	 (a) Shown (b) 882 g (3 sf) (c) The model could be refined to take into account the fact that the cupper sulphate does not disperse immediately on entering the tank.