11.10) Solving differential equations

Worked example	Your turn
Worked example Find the general solution to: $\frac{dy}{dx} = xy - y$	Find the general solution to: $\frac{dy}{dx} = xy + y$ $y = Ae^{\frac{1}{2}x^{2} + x}$

Worked example	Your turn
Find the general solution to: $(1 - x^2)\frac{dy}{dx} = x \cot y$	Find the general solution to: $(1 + x^{2})\frac{dy}{dx} = x \tan y$ $y = \arcsin\left(k\sqrt{1 + x^{2}}\right)$

Find the particular solution to: Find the particular solution to:	Worked example	Your turn
$\frac{dy}{dx} = -\frac{3(y+2)}{(2x-1)(x-2)}$ given that $x = 4$ when $y = 5$ $\frac{dy}{dx} = -\frac{3(y-2)}{(2x+1)(x+2)}$ given that $x = 1$ when $y = 4$ $y = 3 + \frac{3}{2x+1}$	Find the particular solution to: $\frac{dy}{dx} = -\frac{3(y+2)}{(2x-1)(x-2)}$ given that $x = 4$ when $y = 5$	Find the particular solution to: $\frac{dy}{dx} = -\frac{3(y-2)}{(2x+1)(x+2)}$ given that $x = 1$ when $y = 4$ $y = 3 + \frac{3}{2x+1}$

Worked example	Your turn
Find the particular solution to: $\frac{dy}{dx} = -\frac{5}{y \sin^2 x}$ given that $y = 4$ at $x = \frac{\pi}{4}$	Find the particular solution to: $\frac{dy}{dx} = -\frac{3}{y \cos^2 x}$ given that $y = 2$ at $x = \frac{\pi}{4}$ $y^2 = -6 \tan x + 10$

Worked example	Your turn
Find the particular solution to: $\frac{dy}{dx} = xy \cos x$ given that $y = 1$ at $x = \frac{\pi}{2}$	Find the particular solution to: $\frac{dy}{dx} = xy \sin x$ given that $y = 1$ at $x = \frac{\pi}{2}$ $\ln y = \sin x - x \cos x - 1$