11.10) Solving differential equations

Find the general solution to:

$$
\frac{d y}{d x}=x y-y
$$

Find the general solution to:

$$
\begin{aligned}
& \frac{d y}{d x}=x y+y \\
& y=A e^{\frac{1}{2} x^{2}+x}
\end{aligned}
$$

Find the general solution to:

$$
\left(1-x^{2}\right) \frac{d y}{d x}=x \cot y
$$

Find the general solution to:

$$
\begin{gathered}
\left(1+x^{2}\right) \frac{d y}{d x}=x \tan y \\
y=\arcsin \left(k \sqrt{1+x^{2}}\right)
\end{gathered}
$$

Find the particular solution to:

$$
\frac{d y}{d x}=-\frac{3(y+2)}{(2 x-1)(x-2)}
$$

given that $x=4$ when $y=5$

Find the particular solution to:

$$
\frac{d y}{d x}=-\frac{3(y-2)}{(2 x+1)(x+2)}
$$

given that $x=1$ when $y=4$

$$
y=3+\frac{3}{2 x+1}
$$

Find the particular solution to:

$$
\frac{d y}{d x}=-\frac{5}{y \sin ^{2} x}
$$

given that $y=4$ at $x=\frac{\pi}{4}$

Find the particular solution to:

$$
\frac{d y}{d x}=-\frac{3}{y \cos ^{2} x}
$$

given that $y=2$ at $x=\frac{\pi}{4}$

$$
y^{2}=-6 \tan x+10
$$

Your turn

Find the particular solution to:

$$
\begin{array}{r}
\frac{d y}{d x}=x y \cos x \\
\text { given that } y=1 \text { at } x=\frac{\pi}{2}
\end{array}
$$

Find the particular solution to:
$\frac{d y}{d x}=x y \sin x$
given that $y=1$ at $x=\frac{\pi}{2}$

$$
\ln |y|=\sin x-x \cos x-1
$$

