11.9) The trapezium rule

Your turn

Using the trapezium rule, approximate the region bounded between $x=1, x=$ 3 , the x-axis and the curve $y=x^{2}$, using 8 strips.

Using the trapezium rule, approximate the region bounded between $x=1, x=$ 3 , the x-axis and the curve $y=x^{2}$, using 4 strips.

Your turn

$$
I=\int_{0}^{\frac{\pi}{3}} \sec x d x
$$

Use the trapezium rule with two strips to estimate I.

$$
I=\int_{0}^{\frac{\pi}{3}} \sec x d x
$$

Use the trapezium rule with four strips to estimate I.

$$
1.34 \text { (2 dp) }
$$

Worked example

Your turn

$$
I=\int_{0}^{\frac{\pi}{2}} \sin x d x
$$

a) Use the trapezium rule with four strips to estimate I
b) State, with a reason, whether your approximation is an underestimate or an overestimate
c) Find the percentage error of your estimate to the exact value of I
d) Give one way the trapezium rule can be used to give a more accurate approximation

$$
I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x d x
$$

a) Use the trapezium rule with four strips to estimate I
b) State, with a reason, whether your approximation is an underestimate or an overestimate
c) Find the percentage error of your estimate to the exact value of I
d) Give one way the trapezium rule can be used to give a more accurate approximation
a) 1.896 (3 dp)
b) Underestimate. The graph of $y=\cos x$ is convex in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
c) $5.19 \% ~(3 \mathrm{sf})$
d) Increase number of trapezia, decrease h, increase n etc.

