11.8+) Finding areas: Areas under parametric curves

Your turn

Determine the area bound between the curve with parametric equations $x=t^{2}$ and $y=t-1$, the x-axis, and the lines $x=0$ and $x=5$.

Determine the area bound between the curve with parametric equations
$x=t^{2}$ and $y=t+1$, the x-axis, and the lines $x=0$ and $x=3$.

$$
2 \sqrt{3}+3
$$

Your turn

The curve C has parametric equations

$$
x=t(2+t), \quad y=\frac{1}{2+t}, \quad t \geq 0
$$

Find the exact area of the region, bounded by C, the x-axis and the lines $x=0$ and $x=8$.

The curve C has parametric equations

$$
x=t(1+t), \quad y=\frac{1}{1+t}, \quad t \geq 0
$$

Find the exact area of the region, bounded by C, the x-axis and the lines $x=0$ and $x=2$.

$$
2-\ln 2
$$

Your turn

The curve C has parametric equations $x=1-\frac{1}{4} t, \quad y=4^{t}-1, \quad t \geq 0$
A finite region is bounded by the curve C, the x-axis and the line $x=-1$. Find the exact area of this region.

The curve C has parametric equations

$$
x=1-\frac{1}{2} t, \quad y=2^{t}-1, \quad t \geq 0
$$

A finite region is bounded by the curve C, the x-axis and the line $x=-1$. Find the exact area of this region.

$$
\frac{15}{2 \ln 2}-2
$$

