11.5) Integration by substitution

$$\int x(2x-5)^9 \ dx$$

using the substitution u = 2x - 5

Find:

$$\int x(5x-2)^8 \ dx$$

using the substitution u = 5x - 2

$$\frac{(5x-2)^{10}}{250} + \frac{2(5x-2)^9}{225} + c$$

$$\int x\sqrt{5x+2} \ dx$$

using the substitution u = 5x + 2

Find:

$$\int x\sqrt{2x+5}\ dx$$

using the substitution u = 2x + 5

$$\frac{(2x+5)^{\frac{5}{2}}}{10} - \frac{5(2x+5)^{\frac{3}{2}}}{6} + c$$

$$\int x\sqrt{5x+2}\ dx$$

using the substitution $u^2 = 5x + 2$

Find:

$$\int x\sqrt{2x+5}\ dx$$

using the substitution $u^2 = 2x + 5$

$$\frac{(2x+5)^{\frac{5}{2}}}{10} - \frac{5(2x+5)^{\frac{3}{2}}}{6} + c$$

$$\int \cos x \sin x \, (2 + \sin x)^4 \, dx$$

using the substitution $u = \sin x + 2$

Find:

$$\int \cos x \sin x \, (1 + \sin x)^3 \, dx$$

using the substitution $u = \sin x + 1$

$$\frac{1}{5}(\sin x + 1)^5 - \frac{1}{4}(\sin x + 1)^4 + c$$

$$\int_0^{\frac{\pi}{2}} \cos x \sin x (2 + \sin x)^4 dx$$
 using the substitution $u = \sin x + 2$

$$\int_0^{\frac{\pi}{2}} \cos x \sin x (1 + \sin x)^3 dx$$
 using the substitution $u = \sin x + 1$

Ising the substitution
$$u = \sin x + 1$$

$$\frac{49}{4}$$

$$\int \frac{3\sin 2x}{2 + \sin x} \, dx$$

using the substitution $u = 2 + \sin x$

$$\int \frac{2\sin 2x}{1+\cos x} \ dx$$

using the substitution $u = 1 + \cos x$

$$4\ln|1+\cos x|-4\cos x+c$$

Calculate:

$$\int_0^{\frac{\pi}{2}} \sin x \sqrt{2 + \cos x} \ dx$$

 J_0 using the substitution $u = \cos x + 2$

Calculate:

$$\int_0^{\frac{\pi}{2}} \cos x \sqrt{1 + \sin x} \ dx$$
sing the substitution $y = \sin x + 1$

using the substitution $u = \sin x + 1$

$$\frac{2}{3}(2\sqrt{2}-1)$$

Your turn

Use the substitution
$$u = \sqrt{x} - 1$$
 to evaluate:

$$\int_{36}^{49} \frac{1}{\sqrt{x} - 1} \, dx$$

Use the substitution $u = 1 + \sqrt{x}$ to evaluate:

$$\int_{16}^{25} \frac{1}{1+\sqrt{x}} dx$$

$$2+2\ln\left|\frac{5}{6}\right|$$

Your turn

A finite region is bounded by the curve with equation $y = x^3 \ln(x^2 + 3)$, the x-axis and the lines x = 0 and $x = \sqrt{5}$.

A finite region is bounded by the curve with equation $y = x^3 \ln(x^2 + 2)$, the *x*-axis and the lines x = 0 and $x = \sqrt{2}$.

Use the substitution $u=x^2+3$ to show that the area of R is $\frac{1}{2}\int_3^8 (u-3) \ln u \, du$

Use the substitution $u=x^2+2$ to show that the area of R is $\frac{1}{2}\int_2^4 (u-2) \ln u \, du$

Your turn

Using integration by substitution, prove that:

$$-\int \frac{1}{\sqrt{1-x^2}} dx = \arccos x + c$$

Using integration by substitution, prove that:

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$$

Shown

Your turn

Use the substitution
$$u = \cos x$$
 to evaluate

$$\int_0^{\frac{\pi}{3}} \sin^3 x \cos^2 x \, dx$$

Use the substitution $u = \sin x$ to evaluate

$$\int_0^{\frac{\pi}{6}} \sin^2 x \cos^3 x \, dx$$

Your turn

Use the substitution $x = \cos u$ to evaluate

$$\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} x^2 \sqrt{1 - x^2} \, dx$$

Use the substitution $x = \sin u$ to evaluate

$$\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} x^2 \sqrt{1 - x^2} \, dx$$

$$\frac{2\pi + 3\sqrt{3}}{2}$$

$$\frac{\tau + 3\sqrt{3}}{96}$$