11.5) Constant acceleration formulae

Worked example

Your turn

A particle moves in a straight line with constant acceleration $a\ ms^{-2}$.

Given that its initial velocity is $u\ ms^{-1}$ and its initial displacement is $0\ m$, prove that:

Its velocity, $v m s^{-1}$, at time t s is given by v = u + at

acceleration $a\ ms^{-2}$. Given that its initial velocity is $u\ ms^{-1}$ and its initial

A particle moves in a straight line with constant

Given that its initial velocity is $u m s^{-1}$ and its initial displacement is 0 m, prove that:

Its displacement, s m, at time t s is given by $s = ut + \frac{1}{2}at^2$ Proof