Your turn

A particle moves in a straight line with constant acceleration $a \mathrm{~ms}^{-2}$.
Given that its initial velocity is ms^{-1} and its initial displacement is 0 m , prove that:

Its velocity, $v m s^{-1}$, at time $t \mathrm{~s}$ is given by $v=u+a t$
A particle moves in a straight line with constant acceleration ms^{-2}.
Given that its initial velocity is ums^{-1} and its initial displacement is 0 m , prove that:

Its displacement, $s m$, at time $t \mathrm{~s}$ is given by $s=u t+\frac{1}{2} a t^{2}$ Proof

