11.4) Using integration

Worked example

Your turn

A particle is moving on the x-axis. At time $t=0$, the particle is at the point where $x=7$. The velocity of the particle at time t seconds (where $t \geq$ $0)$ is $\left(8 t-3 t^{2}\right) \mathrm{ms}^{-1}$. Find:
(a) An expression for the displacement of the particle from O at time t seconds.
(b) The distance of the particle from its starting point when $t=4$.

A particle is moving on the x-axis.
At time $t=0$, the particle is at the point where $x=5$.
The velocity of the particle at time t seconds (where $t \geq$
$0)$ is $\left(6 t-t^{2}\right) \mathrm{ms}^{-1}$. Find:
(a) An expression for the displacement of the particle from O at time t seconds.
(b) The distance of the particle from its starting point when $t=6$.
a) $x=3 t^{2}-\frac{1}{3} t^{3}+5$
b) 36 m

Your turn

A particle travels in a straight line.
After t seconds its velocity, $v \mathrm{~ms}^{-1}$, is given by $v=7-6 t^{2}$, $t \geq 0$.
Find the distance travelled by the particle in the fifth second of its motion.

A particle travels in a straight line.
After t seconds its velocity, $v \mathrm{~ms}^{-1}$, is given by $v=5-3 t^{2}$, $t \geq 0$.
Find the distance travelled by the particle in the third second of its motion.
$14 m$

Your turn

A particle P moves on the positive x-axis.
The velocity of P at time t seconds is $\left(4 t^{2}-9 t+2\right) m s^{-1}$. When $t=0, P$ is 5 m from the origin O. Find:
a) The values of t when P is instantaneously at rest
b) The acceleration of P when $t=10$
c) The total distance travelled by P in the interval $0 \leq t \leq$ 3

A particle P moves on the positive x-axis.
The velocity of P at time t seconds is $\left(2 t^{2}-9 t+4\right) m s^{-1}$. When $t=0, P$ is 15 m from the origin O. Find:
a) The values of t when P is instantaneously at rest
b) The acceleration of P when $t=5$
c) The total distance travelled by P in the interval $0 \leq t \leq$ 5
a) $t=\frac{1}{2}, t=4$
b) $11 \mathrm{~ms}^{-2}$
c) $19.4 \mathrm{~m}(3 \mathrm{sf})$

Your turn

A particle travels in a straight line such that its acceleration, $a \mathrm{~ms}^{-2}$, at time t seconds, is given by $a=$ $18 t+6$.
When $t=2$ seconds, the displacement, s, is 40 metres. When $t=3$ seconds, the displacement is 117 metres. Find:
a) The displacement when $t=4$ seconds.
b) The velocity when $t=4$ seconds.

A particle travels in a straight line such that its acceleration, $a \mathrm{~ms}^{-2}$, at time t seconds, is given by $a=$ $12 t+4$.
When $t=1$ seconds, the displacement, s, is 6 metres.
When $t=2$ seconds, the displacement is 196 metres.
Find:
a) The displacement when $t=3$ seconds.
b) The velocity when $t=3$ seconds.
a) 98 m
b) $76 \mathrm{~ms}^{-1}$

