11.3) Maxima and minima problems

Worked example

Your turn

A child is playing with a yo-yo. The yo-yo leaves the child's hand at time $t=0$ and travels vertically in a straight line before returning to the child's hand. The distance, $s \mathrm{~m}$, of the yo-yo from the child's hand after time t seconds is given by:

$$
s=2.4 t-0.4 t^{2}-0.4 t^{3}, \quad 0 \leq t \leq 2
$$

(a) Justify the restriction $0 \leq t \leq 2$
(b) Find the maximum distance of the yo-yo from the child's hand, correct to 3 sf.

A child is playing with a yo-yo. The yo-yo leaves the child's hand at time $t=0$ and travels vertically in a straight line before returning to the child's hand. The distance, $s \mathrm{~m}$, of the yo-yo from the child's hand after time t seconds is given by:

$$
s=0.6 t+0.4 t^{2}-0.2 t^{3}, \quad 0 \leq t \leq 3
$$

(a) Justify the restriction $0 \leq t \leq 3$
(b) Find the maximum distance of the yo-yo from the child's hand, correct to 3 sf.
a) $s=0.2 t\left(3+2 t-t^{2}\right)=0.2 t(3-t)(1+t)$ $t \geq 0$ as time cannot be negative.
If $t>3, s<0$ (but distance cannot be negative)

b) $1.21 \mathrm{~m}(3 \mathrm{sf})$

Your turn

A particle P is moving along the x-axis. At time t seconds, the velocity of P in the direction of x increasing, is:

$$
v=\frac{5}{3} t^{3}-18 t^{2}+36 t
$$

Find the maximum velocity of the particle

A particle P is moving along the x-axis. At time t seconds, the velocity of P in the direction of x increasing, is:

$$
v=t^{3}-16 t^{2}+64 t
$$

Find the maximum velocity of the particle

$$
75.9 \mathrm{~ms}^{-1}(3 \mathrm{sf})
$$

Worked example

Your turn

A particle P is moving along the x-axis. At time t seconds, the velocity of P in the direction of x increasing, is:

$$
v=3 t^{2}-21 t+30, t \geq 0
$$

Find the maximum speed of the particle

A particle P is moving along the x-axis. At time t seconds, the velocity of P in the direction of x increasing, is:

$$
v=2 t^{2}-14 t+20, t \geq 0
$$

Find the maximum speed of the particle

$$
20 \mathrm{~ms}^{-1}
$$

