11) Vectors

1.1) Vectors	
1.2) Representing vectors	
1.3) Magnitude and direction	
1.4) Position vectors	
1.5) Solving geometric problems	
1.6) Modelling with vectors	

11.1) Vectors

Worked example	Your turn
$PQRS$ is a parallelogram. N is the point on SQ such that $SN: NQ = 3:4$ $\overrightarrow{PQ} = \boldsymbol{b}$ and $\overrightarrow{PS} = \boldsymbol{a}$	$PQRS$ is a parallelogram. N is the point on SQ such that $SN:NQ = 3:2$ $\overrightarrow{PQ} = a$ and $\overrightarrow{PS} = b$
Express \overrightarrow{NR} in terms of \boldsymbol{a} and \boldsymbol{b}	Express \overrightarrow{NR} in terms of \boldsymbol{a} and \boldsymbol{b} $\frac{2}{5}\boldsymbol{a} + \frac{3}{5}\boldsymbol{b}$

Worked example	Your turn
OAB is a triangle.	OAB is a triangle.
$\overrightarrow{OA} = \boldsymbol{b}$ and $\overrightarrow{OB} = \boldsymbol{a}$	$\overrightarrow{OA} = \boldsymbol{a}$ and $\overrightarrow{OB} = \boldsymbol{b}$
<i>P</i> is the point on <i>AB</i> such that $AP: PB = 2:3$.	<i>P</i> is the point on <i>AB</i> such that $AP:PB = 3:1$.
Find \overrightarrow{OP} in terms of \boldsymbol{a} and \boldsymbol{b}	Find \overrightarrow{OP} in terms of \boldsymbol{a} and \boldsymbol{b}

$$\frac{1}{4}\boldsymbol{a} + \frac{3}{4}\boldsymbol{b}$$

Worked example	Your turn
Show that the vectors are parallel: 3 <i>a</i> + 4 <i>b</i> and 15 <i>a</i> + 20 <i>b</i>	Show that the vectors are parallel: 6a + 8b and $9a + 12b9a + 12b = \frac{3}{2}(6a + 8b)$
3 <i>a</i> + 4 <i>b</i> and −0.75 <i>a</i> − <i>b</i>	

11.2) Representing vectors

Worked example	Your turn
Given $a = 8i - 6j$ and $b = 9i + 7j$, find: • $4b - 2a$ • $-b + \frac{1}{4}a$	Given $a = 5i + 2j$ and $b = 3i - 4j$, find: • $2a - b$ • $-a + \frac{1}{2}b$ • $7i + 8j$ • $-\frac{7}{2}i - 4j$

11.3) Magnitude and direction

Worked example	Your turn
Find the magnitude of the vector: 3i + 4j	Find the magnitude of the vector: $-6\mathbf{i} - 8\mathbf{j}$
	10
-5 i + 12 j	
7 <i>i</i> – 24 <i>j</i>	

Worked example	Your turn
Find a unit vector in the direction of: a = 8i + 15j	Find a unit vector in the direction of: c = 3i - 4j
	$\hat{c} = \frac{1}{5}(3\boldsymbol{i} - 4\boldsymbol{j}) \text{ or } \begin{pmatrix} 0.6\\-0.8 \end{pmatrix}$
b = -9i + 12j	

Worked example	Your turn
Given $a = 8i - 6j$ and $b = 9i + 7j$, find 2b - 3a	Given $a = 5i + 2j$ and $b = 3i - 4j$, find: 4a - 5b
	√ <u>809</u>

Worked example	Your turn
Find the angle between the vector $2i + 3j$ and the positive <i>y</i> -axis.	Find the angle between the vector $4i + 5j$ and the positive <i>x</i> -axis.
	51.3° (3 sf)

Worked example	Your turn
Vector a has magnitude 5 and make an angle of 60° with i . Find a in i , j and column vector format.	Vector b has magnitude 10 and make an angle of 30° with j . Find b in i , j and column vector format.
	$\boldsymbol{b} = 5\boldsymbol{i} + 5\sqrt{3}\boldsymbol{j} = \begin{pmatrix} 5\\ 5\sqrt{3} \end{pmatrix}$

Worked example	Your turn
EXAMPLE A vector $\mathbf{a} = p\mathbf{i} + q\mathbf{j}$ has magnitude 68 and makes an angle θ with the positive <i>x</i> -axis where $\sin \theta = \frac{8}{17}$. Find all the possible vectors	Your turn A vector $a = pi + qj$ has magnitude 26 and makes an angle θ with the positive x-axis where $\sin \theta = \frac{5}{13}$. Find all the possible vectors p = 10, q = 24 p = 10, q = -24 p = -10, q = 24 p = -10, q = -24

Worked example	Your turn
In triangle PQR , $\overrightarrow{PQ} = i + 2j$ and $\overrightarrow{PR} = 8i - 15j$. Find the area of triangle PQR	In triangle PQR , $\overrightarrow{PQ} = 2i + j$ and $\overrightarrow{PR} = 9i - 12j$. Find the area of triangle PQR 16.5

11.4) Position vectors

Worked example	Your turn
The points <i>A</i> and <i>B</i> have coordinates (2,5) and (6,13) respectively. Find, in terms of <i>i</i> and <i>j</i> : a) The position vector of <i>A</i> b) The position vector of <i>B</i> c) The vector \overrightarrow{AB}	The points <i>A</i> and <i>B</i> have coordinates (3,4) and (11,2) respectively. Find, in terms of <i>i</i> and <i>j</i> : a) The position vector of <i>A</i> b) The position vector of <i>B</i> c) The vector \overrightarrow{AB} a) $\overrightarrow{OA} = 3i + 4j$ b) $\overrightarrow{OB} = 11i + 2j$ c) $\overrightarrow{AB} = 8i - 2j$

Worked example	Your turn
$\overrightarrow{OA} = 4\mathbf{i} + 3\mathbf{j}$ and $\overrightarrow{AB} = 2\mathbf{i} - 5\mathbf{j}$. Find: a) The position vector of B . b) The exact value of $ \overrightarrow{OB} $ in simplified surd form.	$\overrightarrow{OA} = 5\mathbf{i} - 2\mathbf{j}$ and $\overrightarrow{AB} = 3\mathbf{i} + 4\mathbf{j}$. Find: a) The position vector of B . b) The exact value of $ \overrightarrow{OB} $ in simplified surd form.
	a) $\overrightarrow{OB} = 8\mathbf{i} + 2\mathbf{j} = \binom{8}{2}$ b) $2\sqrt{17}$

11.5) Solving geometric problems

Worked example	Your turn
$\overrightarrow{AB} = 2\mathbf{i} - 5\mathbf{j}$ and $\overrightarrow{AC} = 3\mathbf{i} - 7\mathbf{j}$. Determine $\angle BAC$.	$\overrightarrow{AB} = 3\mathbf{i} - 2\mathbf{j}$ and $\overrightarrow{AC} = \mathbf{i} - 5\mathbf{j}$. Determine $\angle BAC$.
	45°

11.6) Modelling with vectors

Worked example	Your turn
A girl walks 6 km due east from a fixed point <i>O</i> to <i>A</i> , and then 4 km due south from <i>A</i> to <i>B</i> . Find: a) the total distance travelled b) the position vector of <i>B</i> relative to <i>O</i> c) $ \overrightarrow{OB} $ d) The bearing of <i>B</i> from <i>O</i> .	A girl walks 2 km due east from a fixed point O to <i>A</i> , and then 3 km due south from <i>A</i> to <i>B</i> . Find: a) the total distance travelled b) the position vector of <i>B</i> relative to <i>O</i> c) $ \overline{OB} $ d) The bearing of <i>B</i> from <i>O</i> . a) 5 km b) (2i - 3j) km c) 3.61 km (3 sf) d) 146° (3 sf)

Worked example	Your turn
starting point O and walks 30 km on a bearing of 150° to reach A , the first checkpoint.starting point O and 120° to reach A , the 120° to reach A , the From A she walks 18 km on a bearing of 210° to the second checkpoint, at B .starting point O and 120° to reach A , the From A he walks 9 second checkpoint.From B she returns directly to O .From B he returns Find:From B he returns Find:a) the position vector of A relative to O a) the position vector of A relative to O b) $ \overline{OB} $ c) the bearing of B from O	a directly to <i>O</i> . ector of <i>A</i> relative to <i>O</i> f <i>B</i> from <i>O</i> ector of <i>B</i> relative <i>O</i> . km (1 dp)