11) Vectors

11.1) Vectors
11.2) Representing vectors
11.3) Magnitude and direction
11.4) Position vectors
11.5) Solving geometric problems
11.6) Modelling with vectors

Your turn

$P Q R S$ is a parallelogram.
N is the point on $S Q$ such that $S N: N Q=3: 4$ $\overrightarrow{P Q}=\boldsymbol{b}$ and $\overrightarrow{P S}=\boldsymbol{a}$
Express $\overrightarrow{N R}$ in terms of \boldsymbol{a} and \boldsymbol{b}
$P Q R S$ is a parallelogram.
N is the point on $S Q$ such that $S N: N Q=3: 2$
$\overrightarrow{P Q}=\boldsymbol{a}$ and $\overrightarrow{P S}=\boldsymbol{b}$
Express $\overrightarrow{N R}$ in terms of \boldsymbol{a} and \boldsymbol{b}

$$
\frac{2}{5} a+\frac{3}{5} b
$$

Your turn

$O A B$ is a triangle.
$\overrightarrow{O A}=\boldsymbol{b}$ and $\overrightarrow{O B}=\boldsymbol{a}$
P is the point on $A B$ such that $A P: P B=2: 3$. Find $\overrightarrow{O P}$ in terms of \boldsymbol{a} and \boldsymbol{b}
$O A B$ is a triangle.
$\overrightarrow{O A}=\boldsymbol{a}$ and $\overrightarrow{O B}=\boldsymbol{b}$
P is the point on $A B$ such that $A P: P B=3: 1$. Find $\overrightarrow{O P}$ in terms of \boldsymbol{a} and \boldsymbol{b}

$$
\frac{1}{4} a+\frac{3}{4} b
$$

Show that the vectors are parallel:
$3 \boldsymbol{a}+4 \boldsymbol{b}$ and $15 \boldsymbol{a}+20 \boldsymbol{b}$
$3 \boldsymbol{a}+4 \boldsymbol{b}$ and $-0.75 \boldsymbol{a}-\boldsymbol{b}$

Show that the vectors are parallel:
$6 \boldsymbol{a}+8 \boldsymbol{b}$ and $9 \boldsymbol{a}+12 \boldsymbol{b}$

$$
9 \boldsymbol{a}+12 \boldsymbol{b}=\frac{3}{2}(6 \boldsymbol{a}+8 \boldsymbol{b})
$$

Worked example

Your turn

Represent in column vector form:

Represent in column vector form:

$\binom{3}{-2}$

Draw a diagram to represent the vector: $2 \boldsymbol{i}+3 \boldsymbol{j}$
$-3 \boldsymbol{i}+2 \boldsymbol{j}$
$2 \boldsymbol{i}-3 \boldsymbol{j}$
$-2 \boldsymbol{i}-3 \boldsymbol{j}$

Draw a diagram to represent the vector: $3 \boldsymbol{i}+2 \boldsymbol{j}$

Given $\boldsymbol{a}=8 \boldsymbol{i}-6 \boldsymbol{j}$ and $\boldsymbol{b}=9 \boldsymbol{i}+7 \boldsymbol{j}$, find:

- $4 \boldsymbol{b}-2 \boldsymbol{a}$
- $-\boldsymbol{b}+\frac{1}{4} \boldsymbol{a}$

Given $\boldsymbol{a}=5 \boldsymbol{i}+2 \boldsymbol{j}$ and $\boldsymbol{b}=3 \boldsymbol{i}-4 \boldsymbol{j}$, find:

- $2 \boldsymbol{a}-\boldsymbol{b}$
- $-\boldsymbol{a}+\frac{1}{2} \boldsymbol{b}$
- $7 \boldsymbol{i}+8 \boldsymbol{j}$
- $-\frac{7}{2} \boldsymbol{i}-4 \boldsymbol{j}$

Your turn

Find the magnitude of the vector:
$3 \boldsymbol{i}+4 \boldsymbol{j}$
Find the magnitude of the vector:
$-6 \boldsymbol{i}-8 \boldsymbol{j}$
10

Find a unit vector in the direction of:

$$
a=8 \boldsymbol{i}+15 \boldsymbol{j}
$$

$$
b=-9 \boldsymbol{i}+12 \boldsymbol{j}
$$

Find a unit vector in the direction of:

$$
\begin{gathered}
\boldsymbol{c}=3 \boldsymbol{i}-4 \boldsymbol{j} \\
\hat{c}=\frac{1}{5}(3 \boldsymbol{i}-4 \boldsymbol{j}) \text { or }\binom{0.6}{-0.8}
\end{gathered}
$$

Your turn

Given $\boldsymbol{a}=8 \boldsymbol{i}-6 \boldsymbol{j}$ and $\boldsymbol{b}=9 \boldsymbol{i}+7 \boldsymbol{j}$, find
$|2 \boldsymbol{b}-3 \boldsymbol{a}|$

Given $\boldsymbol{a}=5 \boldsymbol{i}+2 \boldsymbol{j}$ and $\boldsymbol{b}=3 \boldsymbol{i}-4 \boldsymbol{j}$, find:
$|4 \boldsymbol{a}-5 \boldsymbol{b}|$

Your turn

Find the angle between the vector $2 \boldsymbol{i}+3 \boldsymbol{j}$ and the positive y-axis.

Find the angle between the vector $4 \boldsymbol{i}+5 \boldsymbol{j}$ and the positive x-axis.

Vector \boldsymbol{a} has magnitude 5 and make an angle of 60° with i.
Find \boldsymbol{a} in $\boldsymbol{i}, \boldsymbol{j}$ and column vector format.

Vector \boldsymbol{b} has magnitude 10 and make an angle of 30° with \boldsymbol{j}.
Find \boldsymbol{b} in $\boldsymbol{i}, \boldsymbol{j}$ and column vector format.

$$
\boldsymbol{b}=5 \boldsymbol{i}+5 \sqrt{3} \boldsymbol{j}=\binom{5}{5 \sqrt{3}}
$$

A vector $\boldsymbol{a}=p \boldsymbol{i}+q \boldsymbol{j}$ has magnitude 68 and makes an angle θ with the positive x-axis where $\sin \theta=\frac{8}{17}$. Find all the possible vectors

A vector $\boldsymbol{a}=p \boldsymbol{i}+q \boldsymbol{j}$ has magnitude 26 and makes an angle θ with the positive x-axis where $\sin \theta=\frac{5}{13}$. Find all the possible vectors

$$
\begin{gathered}
p=10, q=24 \\
p=10, q=-24 \\
p=-10, q=24 \\
p=-10, q=-24
\end{gathered}
$$

In triangle $P Q R, \overrightarrow{P Q}=\boldsymbol{i}+2 \boldsymbol{j}$ and $\overrightarrow{P R}=8 \boldsymbol{i}-15 \boldsymbol{j}$.
Find the area of triangle $P Q R$

In triangle $P Q R, \overrightarrow{P Q}=2 \boldsymbol{i}+\boldsymbol{j}$ and $\overrightarrow{P R}=9 \boldsymbol{i}-12 \boldsymbol{j}$.
Find the area of triangle $P Q R$
16.5

The points A and B have coordinates $(2,5)$ and $(6,13)$ respectively. Find, in terms of \boldsymbol{i} and \boldsymbol{j} :
a) The position vector of A
b) The position vector of B
c) The vector $\overrightarrow{A B}$

The points A and B have coordinates $(3,4)$ and $(11,2)$ respectively. Find, in terms of \boldsymbol{i} and \boldsymbol{j} :
a) The position vector of A
b) The position vector of B
c) The vector $\overrightarrow{A B}$
a) $\overrightarrow{O A}=3 \boldsymbol{i}+4 \boldsymbol{j}$
b) $\overrightarrow{O B}=11 i+2 j$
c) $\overrightarrow{A B}=8 \boldsymbol{i}-2 \boldsymbol{j}$
$\overrightarrow{O A}=4 \boldsymbol{i}+3 \boldsymbol{j}$ and $\overrightarrow{A B}=2 \boldsymbol{i}-5 \boldsymbol{j}$. Find:
a) The position vector of B.
b) The exact value of $|\overrightarrow{O B}|$ in simplified surd form.
$\overrightarrow{O A}=5 \boldsymbol{i}-2 \boldsymbol{j}$ and $\overrightarrow{A B}=3 \boldsymbol{i}+4 \boldsymbol{j}$. Find:
a) The position vector of B.
b) The exact value of $|\overrightarrow{O B}|$ in simplified surd form.
a) $\overrightarrow{O B}=8 \boldsymbol{i}+2 \boldsymbol{j}=\binom{8}{2}$
b) $2 \sqrt{17}$

Your turn

$O A C B$ is a parallelogram.
X is a point on $A B$ such that $A X: X B=2: 1 . N$ is the point such that $N C$ is half of $B N$. Show that $\overrightarrow{X N}$ is parallel to $\overrightarrow{O C}$.

$O A C B$ is a parallelogram.
X is a point on $A B$ such that $A X: X B=3: 1 . M$ is the midpoint of $B C$.
Show that $\overrightarrow{X M}$ is parallel to $\overrightarrow{O C}$.

Your turn

$\overrightarrow{A B}=2 \boldsymbol{i}-5 \boldsymbol{j}$ and $\overrightarrow{A C}=3 \boldsymbol{i}-7 \boldsymbol{j}$. Determine $\angle B A C$.
$\overrightarrow{A B}=3 \boldsymbol{i}-2 \boldsymbol{j}$ and $\overrightarrow{A C}=\boldsymbol{i}-5 \boldsymbol{j}$. Determine $\angle B A C$.

A girl walks 6 km due east from a fixed point O to A, and then 4 km due south from A to B. Find:
a) the total distance travelled
b) the position vector of B relative to O
c) $|\overrightarrow{O B}|$
d) The bearing of B from O.

A girl walks 2 km due east from a fixed point O to A, and then 3 km due south from A to B. Find:
a) the total distance travelled
b) the position vector of B relative to O
c) $|\overrightarrow{O B}|$
d) The bearing of B from O.
a) 5 km
b) $(2 \boldsymbol{i}-3 \boldsymbol{j}) \mathrm{km}$
c) 3.61 km (3 sf)
d) 146° (3 sf)

Worked example

Your turn

In an orienteering exercise, a cadet leaves the starting point O and walks 30 km on a bearing of 150° to reach A, the first checkpoint.
From A she walks 18 km on a bearing of 210° to the second checkpoint, at B.
From B she returns directly to 0 .
Find:
a) the position vector of A relative to O
b) $|\overrightarrow{O B}|$
c) the bearing of B from O
d) the position vector of B relative O.

In an orienteering exercise, a cadet leaves the starting point O and walks 15 km on a bearing of 120° to reach A, the first checkpoint.
From A he walks 9 km on a bearing of 240° to the second checkpoint, at B.
From B he returns directly to 0 .
Find:
a) the position vector of A relative to O
b) $|\overrightarrow{O B}|$
c) the bearing of B from O
d) the position vector of B relative O.
a) $(13.0 \boldsymbol{i}-7.5 \boldsymbol{j}) \mathrm{km}(1 \mathrm{dp})$
b) $13.1 \mathrm{~km}(3 \mathrm{sf})$
c) $157^{\circ}(3 \mathrm{sf})$
d) $(5.2 \boldsymbol{i}-12.0 \boldsymbol{j}) \mathrm{km}$

