11) Variable acceleration

11.1) Functions of time
11.2) Using differentiation
11.3) Maxima and minima problems
11.4) Using integration
11.5) Constant acceleration formulae

Worked example

Your turn

A body moves in a straight line, such that its displacement, s metres, from a point O at time t seconds, is given by

$$
s=5 t^{3}-2 t, t>0
$$

Find:

a) s when $t=3$
b) The time taken for the particle to return to O

A body moves in a straight line, such that its displacement, s metres, from a point O at time t seconds, is given by

$$
s=2 t^{3}-3 t, t>0
$$

Find:
a) s when $t=2$
b) The time taken for the particle to return to O
a) 10 m
b) $\sqrt{\frac{3}{2}} s=1.2 s(2 \mathrm{sf})$

Worked example

Your turn

A train travels along a straight track, leaving the start of the track at time $t=0$. It then returns to the start of the track. The distance, s metres, from the start of the track at time t seconds is modelled by:

$$
s=8 t^{2}-5 t^{3}, \quad 0 \leq t \leq 1.6
$$

Explain the restriction $0 \leq t \leq 1.6$

A train travels along a straight track, leaving the start of the track at time $t=0$. It then returns to the start of the track. The distance, s metres, from the start of the track at time t seconds is modelled by:

$$
s=4 t^{2}-t^{3}, 0 \leq t \leq 4
$$

Explain the restriction $0 \leq t \leq 4$
s is the distance from the start of the track: $s \geq 0$

$$
\begin{gathered}
4 t^{2}-t^{3} \geq 0 \\
t^{2}(4-t) \geq 0
\end{gathered}
$$

$t^{2} \geq 0$ for all t and $(4-t)<0$ for all $t>4$.
So $t^{2}(4-t)$ is only non-negative for $t \leq 4$
Motion begins at $t=0$, hence $t \geq 0$
Hence $0 \leq t \leq 4$

Your turn

A body moves in a straight line such that its velocity, v $m s^{-1}$, at time t seconds is given by $v=3 t^{2}-24 t+36$. Find
(a) The initial velocity
(b) The values of t when the body is instantaneously at rest.
(c) The value of t when the velocity is $63 \mathrm{~ms}^{-1}$.
(d) The greatest speed of the body in the interval $0 \leq t \leq$ 7.

A body moves in a straight line such that its velocity, v $m s^{-1}$, at time t seconds is given by $v=2 t^{2}-16 t+24$. Find
(a) The initial velocity
(b) The values of t when the body is instantaneously at rest.
(c) The value of t when the velocity is $64 \mathrm{~ms}^{-1}$.
(d) The greatest speed of the body in the interval $0 \leq t \leq$ 5.
a) $24 \mathrm{~ms}^{-1}$
b) $t=2, t=6$
c) $t=10$
d) $24 \mathrm{~ms}^{-1}$

Your turn

A particle P is moving on the x-axis.
At time t seconds, the displacement x metres from O is given by

$$
x=3 t^{4}-96 t+7
$$

Find:
(a) the velocity of P when $t=5$
(b) The value of t when P is instantaneously at rest
(c) The acceleration of P when $t=0.5$

A particle P is moving on the x-axis.
At time t seconds, the displacement x metres from O is given by

$$
x=t^{4}-32 t+14
$$

Find:
(a) the velocity of P when $t=3$
(b) The value of t when P is instantaneously at rest
(c) The acceleration of P when $t=1.5$
a) $76 \mathrm{~ms}^{-1}$
b) $t=2$
c) $27 \mathrm{~ms}^{-2}$

Worked example

Your turn

A particle P is moving on the x-axis.
At time t seconds, the displacement x metres from O is given by

$$
x=\frac{1}{3} t^{3}-\frac{7}{2} t^{2}+12 t+15
$$

Find the distance between the two points at which the particle is at rest.

A particle P is moving on the x-axis.
At time t seconds, the displacement x metres from O is given by

$$
x=\frac{1}{3} t^{3}-\frac{11}{2} t^{2}+30 t+5
$$

Find the distance between the two points at which the particle is at rest.

$$
0.17 m(2 \mathrm{~s} f)
$$

11.3) Maxima and minima problems

Worked example

Your turn

A child is playing with a yo-yo. The yo-yo leaves the child's hand at time $t=0$ and travels vertically in a straight line before returning to the child's hand. The distance, $s \mathrm{~m}$, of the yo-yo from the child's hand after time t seconds is given by:

$$
s=2.4 t-0.4 t^{2}-0.4 t^{3}, \quad 0 \leq t \leq 2
$$

(a) Justify the restriction $0 \leq t \leq 2$
(b) Find the maximum distance of the yo-yo from the child's hand, correct to 3 sf.

A child is playing with a yo-yo. The yo-yo leaves the child's hand at time $t=0$ and travels vertically in a straight line before returning to the child's hand. The distance, $s \mathrm{~m}$, of the yo-yo from the child's hand after time t seconds is given by:

$$
s=0.6 t+0.4 t^{2}-0.2 t^{3}, \quad 0 \leq t \leq 3
$$

(a) Justify the restriction $0 \leq t \leq 3$
(b) Find the maximum distance of the yo-yo from the child's hand, correct to 3 sf.
a) $s=0.2 t\left(3+2 t-t^{2}\right)=0.2 t(3-t)(1+t)$ $t \geq 0$ as time cannot be negative.
If $t>3, s<0$ (but distance cannot be negative)

b) $1.21 \mathrm{~m}(3 \mathrm{sf})$

Your turn

A particle P is moving along the x-axis. At time t seconds, the velocity of P in the direction of x increasing, is:

$$
v=\frac{5}{3} t^{3}-18 t^{2}+36 t
$$

Find the maximum velocity of the particle

A particle P is moving along the x-axis. At time t seconds, the velocity of P in the direction of x increasing, is:

$$
v=t^{3}-16 t^{2}+64 t
$$

Find the maximum velocity of the particle

$$
75.9 \mathrm{~ms}^{-1}(3 \mathrm{sf})
$$

Worked example

Your turn

A particle P is moving along the x-axis. At time t seconds, the velocity of P in the direction of x increasing, is:

$$
v=3 t^{2}-21 t+30, t \geq 0
$$

Find the maximum speed of the particle

A particle P is moving along the x-axis. At time t seconds, the velocity of P in the direction of x increasing, is:

$$
v=2 t^{2}-14 t+20, t \geq 0
$$

Find the maximum speed of the particle

$$
20 \mathrm{~ms}^{-1}
$$

Worked example

Your turn

A particle is moving on the x-axis. At time $t=0$, the particle is at the point where $x=7$. The velocity of the particle at time t seconds (where $t \geq$ $0)$ is $\left(8 t-3 t^{2}\right) \mathrm{ms}^{-1}$. Find:
(a) An expression for the displacement of the particle from O at time t seconds.
(b) The distance of the particle from its starting point when $t=4$.

A particle is moving on the x-axis.
At time $t=0$, the particle is at the point where $x=5$.
The velocity of the particle at time t seconds (where $t \geq$
$0)$ is $\left(6 t-t^{2}\right) \mathrm{ms}^{-1}$. Find:
(a) An expression for the displacement of the particle from O at time t seconds.
(b) The distance of the particle from its starting point when $t=6$.
a) $x=3 t^{2}-\frac{1}{3} t^{3}+5$
b) 36 m

Your turn

A particle travels in a straight line.
After t seconds its velocity, $v \mathrm{~ms}^{-1}$, is given by $v=7-6 t^{2}$, $t \geq 0$.
Find the distance travelled by the particle in the fifth second of its motion.

A particle travels in a straight line.
After t seconds its velocity, $v \mathrm{~ms}^{-1}$, is given by $v=5-3 t^{2}$, $t \geq 0$.
Find the distance travelled by the particle in the third second of its motion.
$14 m$

Your turn

A particle P moves on the positive x-axis.
The velocity of P at time t seconds is $\left(4 t^{2}-9 t+2\right) m s^{-1}$. When $t=0, P$ is 5 m from the origin O. Find:
a) The values of t when P is instantaneously at rest
b) The acceleration of P when $t=10$
c) The total distance travelled by P in the interval $0 \leq t \leq$ 3

A particle P moves on the positive x-axis.
The velocity of P at time t seconds is $\left(2 t^{2}-9 t+4\right) m s^{-1}$. When $t=0, P$ is 15 m from the origin O. Find:
a) The values of t when P is instantaneously at rest
b) The acceleration of P when $t=5$
c) The total distance travelled by P in the interval $0 \leq t \leq$ 5
a) $t=\frac{1}{2}, t=4$
b) $11 \mathrm{~ms}^{-2}$
c) $19.4 \mathrm{~m}(3 \mathrm{sf})$

Your turn

A particle travels in a straight line such that its acceleration, $a \mathrm{~ms}^{-2}$, at time t seconds, is given by $a=$ $18 t+6$.
When $t=2$ seconds, the displacement, s, is 40 metres. When $t=3$ seconds, the displacement is 117 metres. Find:
a) The displacement when $t=4$ seconds.
b) The velocity when $t=4$ seconds.

A particle travels in a straight line such that its acceleration, $a \mathrm{~ms}^{-2}$, at time t seconds, is given by $a=$ $12 t+4$.
When $t=1$ seconds, the displacement, s, is 6 metres.
When $t=2$ seconds, the displacement is 196 metres.
Find:
a) The displacement when $t=3$ seconds.
b) The velocity when $t=3$ seconds.
a) 98 m
b) $76 \mathrm{~ms}^{-1}$

Your turn

A particle moves in a straight line with constant acceleration $a \mathrm{~ms}^{-2}$.
Given that its initial velocity is ms^{-1} and its initial displacement is 0 m , prove that:

Its velocity, $v m s^{-1}$, at time $t \mathrm{~s}$ is given by $v=u+a t$
A particle moves in a straight line with constant acceleration ms^{-2}.
Given that its initial velocity is ums^{-1} and its initial displacement is 0 m , prove that:

Its displacement, $s m$, at time $t \mathrm{~s}$ is given by $s=u t+\frac{1}{2} a t^{2}$ Proof

