11) Variable acceleration

11.1) Functions of time
11.2) Using differentiation
11.3) Maxima and minima problems
11.4) Using integration
11.5) Constant acceleration formulae

11.1) Functions of time

Chapter CONTENTS

Worked example	Your turn
A body moves in a straight line, such that its displacement, s metres, from a point 0 at time t seconds, is given by $s = 5t^3 - 2t, t > 0$	A body moves in a straight line, such that its displacement, s metres, from a point O at time t seconds, is given by $s = 2t^3 - 3t, t > 0$
Find:	Find:
a) s when $t = 3$	a) s when $t = 2$
b) The time taken for the particle to return to <i>O</i>	b) The time taken for the particle to return to O
	a) 10 m
	b) $\sqrt{\frac{3}{2}} s = 1.2 s$ (2 sf)

Worked example	Your turn
A train travels along a straight track, leaving the start of the track at time $t = 0$. It then returns to the start of the track. The distance, s metres, from the start of the track at time t seconds is modelled by: $s = 8t^2 - 5t^3$, $0 \le t \le 1.6$ Explain the restriction $0 \le t \le 1.6$	A train travels along a straight track, leaving the start of the track at time $t = 0$. It then returns to the start of the track. The distance, s metres, from the start of the track at time t seconds is modelled by: $s = 4t^2 - t^3, 0 \le t \le 4$ Explain the restriction $0 \le t \le 4$
	<i>s</i> is the distance from the start of the track: $s \ge 0$ $4t^2 - t^3 \ge 0$ $t^2(4 - t) \ge 0$ $t^2 \ge 0$ for all <i>t</i> and $(4 - t) < 0$ for all $t > 4$. So $t^2(4 - t)$ is only non-negative for $t \le 4$ Motion begins at $t = 0$, hence $t \ge 0$ Hence $0 \le t \le 4$

Worked example	Your turn
 A body moves in a straight line such that its velocity, v ms⁻¹, at time t seconds is given by v = 3t² - 24t + 36. Find (a) The initial velocity (b) The values of t when the body is instantaneously at rest. (c) The value of t when the velocity is 63 ms⁻¹. (d) The greatest speed of the body in the interval 0 ≤ t ≤ 7. 	A body moves in a straight line such that its velocity, $v ms^{-1}$, at time t seconds is given by $v = 2t^2 - 16t + 24$. Find (a) The initial velocity (b) The values of t when the body is instantaneously at rest. (c) The value of t when the velocity is $64 ms^{-1}$. (d) The greatest speed of the body in the interval $0 \le t \le 5$. a) $24 ms^{-1}$ b) $t = 2, t = 6$ c) $t = 10$ d) $24 ms^{-1}$

11.2) Using differentiation

Chapter CONTENTS

Worked example	Your turn
A particle <i>P</i> is moving on the <i>x</i> -axis. At time <i>t</i> seconds, the displacement <i>x</i> metres from <i>O</i> is given by $x = 3t^4 - 96t + 7$ Find: (a) the velocity of <i>P</i> when $t = 5$ (b) The value of <i>t</i> when <i>P</i> is instantaneously at rest (c) The acceleration of <i>P</i> when $t = 0.5$	A particle <i>P</i> is moving on the <i>x</i> -axis. At time <i>t</i> seconds, the displacement <i>x</i> metres from <i>O</i> is given by $x = t^4 - 32t + 14$ Find: (a) the velocity of <i>P</i> when $t = 3$ (b) The value of <i>t</i> when <i>P</i> is instantaneously at rest (c) The acceleration of <i>P</i> when $t = 1.5$ a) 76 ms ⁻¹ b) $t = 2$ c) 27 ms ⁻²

Worked example	Your turn
A particle <i>P</i> is moving on the <i>x</i> -axis. At time <i>t</i> seconds, the displacement <i>x</i> metres from <i>O</i> is given by $x = \frac{1}{3}t^3 - \frac{7}{2}t^2 + 12t + 15$	A particle <i>P</i> is moving on the <i>x</i> -axis. At time <i>t</i> seconds, the displacement <i>x</i> metres from <i>O</i> is given by $x = \frac{1}{3}t^3 - \frac{11}{2}t^2 + 30t + 5$
Find the distance between the two points at which the particle is at rest.	Find the distance between the two points at which the particle is at rest.
	0.17 m (2s f)

11.3) Maxima and minima problems Chapter CONTENTS

Worked example	Your turn
A child is playing with a yo-yo. The yo-yo leaves the child's hand at time $t = 0$ and travels vertically in a straight line before returning to the child's hand. The distance, s m, of the yo-yo from the child's hand after time t seconds is given by:	A child is playing with a yo-yo. The yo-yo leaves the child hand at time $t = 0$ and travels vertically in a straight line before returning to the child's hand. The distance, <i>s</i> m, the yo-yo from the child's hand after time <i>t</i> seconds is given by:
$s = 2.4t - 0.4t^2 - 0.4t^3, \qquad 0 \le t \le 2$ (a) Justify the restriction $0 \le t \le 2$ (b) Find the maximum distance of the yo-yo from the child's hand, correct to 3sf.	$s = 0.6t + 0.4t^2 - 0.2t^3, \qquad 0 \le t \le 3$ (a) Justify the restriction $0 \le t \le 3$ (b) Find the maximum distance of the yo-yo from the child's hand, correct to 3sf.
	a) $s = 0.2t(3 + 2t - t^2) = 0.2t(3 - t)(1 + t)$ $t \ge 0$ as time cannot be negative. If $t > 3, s < 0$ (but distance cannot be negative)

b) 1.21 *m* (3 sf)

Graphs used with permission from DESMOS: <u>https://www.desmos.com/</u>

Worked example	Your turn
A particle <i>P</i> is moving along the <i>x</i> -axis. At time <i>t</i> seconds, the velocity of <i>P</i> in the direction of <i>x</i> increasing, is: $v = \frac{5}{3}t^3 - 18t^2 + 36t$	A particle <i>P</i> is moving along the <i>x</i> -axis. At time <i>t</i> seconds, the velocity of <i>P</i> in the direction of <i>x</i> increasing, is: $v = t^3 - 16t^2 + 64t$
Find the maximum velocity of the particle	Find the maximum velocity of the particle
	75.9 <i>ms</i> ⁻¹ (3 sf)

Worked example	Your turn
A particle <i>P</i> is moving along the <i>x</i> -axis. At time <i>t</i> seconds, the velocity of <i>P</i> in the direction of <i>x</i> increasing, is: $v = 3t^2 - 21t + 30, t \ge 0$ Find the maximum speed of the particle	A particle <i>P</i> is moving along the <i>x</i> -axis. At time <i>t</i> seconds, the velocity of <i>P</i> in the direction of <i>x</i> increasing, is: $v = 2t^2 - 14t + 20, t \ge 0$ Find the maximum speed of the particle
The the maximum speed of the particle	20 ms^{-1}
	$20 ms^{-1}$

11.4) Using integration

Chapter CONTENTS

Worked example	Your turn
 A particle is moving on the <i>x</i>-axis. At time t = 0, the particle is at the point where x = 7. The velocity of the particle at time t seconds (where t ≥ 0) is (8t - 3t²) ms⁻¹. Find: (a) An expression for the displacement of the particle from 0 at time t seconds. (b) The distance of the particle from its starting point when t = 4. 	A particle is moving on the <i>x</i> -axis. At time $t = 0$, the particle is at the point where $x = 5$. The velocity of the particle at time <i>t</i> seconds (where $t \ge 0$) is $(6t - t^2)$ ms ⁻¹ . Find: (a) An expression for the displacement of the particle from <i>O</i> at time <i>t</i> seconds. (b) The distance of the particle from its starting point when $t = 6$. a) $x = 3t^2 - \frac{1}{3}t^3 + 5$ b) $36 m$
 The velocity of the particle at time t seconds (where t ≥ 0) is (8t - 3t²) ms⁻¹. Find: (a) An expression for the displacement of the particle from 0 at time t seconds. (b) The distance of the particle from its starting point when t = 4. 	The velocity of the particle at time <i>t</i> seconds (where <i>t</i> 0) is $(6t - t^2)$ ms ⁻¹ . Find: (a) An expression for the displacement of the particle from <i>O</i> at time <i>t</i> seconds. (b) The distance of the particle from its starting point when $t = 6$. a) $x = 3t^2 - \frac{1}{3}t^3 + 5$ b) 36 <i>m</i>

Worked example	Your turn
A particle travels in a straight line. After t seconds its velocity, $v \text{ ms}^{-1}$, is given by $v = 7 - 6t^2$, $t \ge 0$. Find the distance travelled by the particle in the fifth second of its motion.	A particle travels in a straight line. After t seconds its velocity, $v \text{ ms}^{-1}$, is given by $v = 5 - 3t^2$, $t \ge 0$. Find the distance travelled by the particle in the third second of its motion.
	14 m

Worked example	Your turn
A particle <i>P</i> moves on the positive <i>x</i> -axis. The velocity of <i>P</i> at time <i>t</i> seconds is $(4t^2 - 9t + 2)ms^{-1}$. When $t = 0$, <i>P</i> is 5 <i>m</i> from the origin <i>O</i> . Find: a) The values of <i>t</i> when <i>P</i> is instantaneously at rest b) The acceleration of <i>P</i> when $t = 10$ c) The total distance travelled by <i>P</i> in the interval $0 \le t \le 3$	A particle <i>P</i> moves on the positive <i>x</i> -axis. The velocity of <i>P</i> at time <i>t</i> seconds is $(2t^2 - 9t + 4)ms^{-1}$. When $t = 0$, <i>P</i> is 15 <i>m</i> from the origin <i>O</i> . Find: a) The values of <i>t</i> when <i>P</i> is instantaneously at rest b) The acceleration of <i>P</i> when $t = 5$ c) The total distance travelled by <i>P</i> in the interval $0 \le t \le 5$ a) $t = \frac{1}{2}$, $t = 4$ b) 11 ms^{-2} c) 19.4 <i>m</i> (3 sf)

Worked example	Your turn
A particle travels in a straight line such that its acceleration, $a m s^{-2}$, at time t seconds, is given by $a = 18t + 6$.	A particle travels in a straight line such that its acceleration, $a m s^{-2}$, at time t seconds, is given by $a = 12t + 4$.
When $t = 2$ seconds, the displacement, s , is 40 metres. When $t = 3$ seconds, the displacement is 117 metres. Find: a) The displacement when $t = 4$ seconds. b) The velocity when $t = 4$ seconds.	When $t = 1$ seconds, the displacement, s , is 6 metres. When $t = 2$ seconds, the displacement is 196 metres. Find: a) The displacement when $t = 3$ seconds. b) The velocity when $t = 3$ seconds.
	a) 98 m b) 76 ms ⁻¹

11.5) Constant acceleration formulae Chapter CONTENTS

Worked example	Your turn
A particle moves in a straight line with constant acceleration $a ms^{-2}$. Given that its initial velocity is $u ms^{-1}$ and its initial displacement is 0 m , prove that:	A particle moves in a straight line with constant acceleration $a m s^{-2}$. Given that its initial velocity is $u m s^{-1}$ and its initial displacement is 0 m , prove that:
Its velocity, $v m s^{-1}$, at time t s is given by $v = u + at$	Its displacement, <i>s m</i> , at time <i>t</i> s is given by $s = ut + \frac{1}{2}at^2$ Proof