11) Integration

11.1) Integrating standard functions
11.2) Integrating $f(ax + b)$
11.3) Using trigonometric identities
11.4) Reverse chain rule
11.5) Integration by substitution
11.6) Integration by parts
11.7) Partial fractions
11.8) Finding areas
11.8+) Finding areas: Areas under parametric curves
11.9) The trapezium rule
11.10) Solving differential equations
11.11) Modelling with differential equations
11.12) Integration as the limit of a sum

11.1) Integrating standard functions Chapter CONTENTS

Worked example	Your turn
By thinking about integration as the reverse of differentiation, find: $\int x^n dx$	By thinking about integration as the reverse of differentiation, find: $\int \frac{1}{x} dx$ $\ln x + c$
$\int e^x dx$	

Worked example	Your turn
By thinking about integration as the reverse of differentiation, find: $\int \sin x dx$	By thinking about integration as the reverse of differentiation, find: $\int \cos x dx$ $\sin x + c$
$\int cosec \ x \cot x \ dx$	$\int \sec x \tan x dx$ $\sec x + c$
$\int \sec^2 x dx$	$\int \csc^2 x dx \\ -\cot x + c$

Worked example	Your turn
By thinking about integration as the reverse of differentiation, find:	By thinking about integration as the reverse of differentiation, find:
$\int -\sin x dx$	$\int -\cos x dx$
	$-\sin x + c$
$\int -cosec \ x \cot x \ dx$	$\int -\sec x \tan x dx$
	$-\sec x + c$
$\int -\sec^2 x dx$	$\int -\csc^2 x dx$ $\cot x + c$

Worked example	Your turn
Find:	Find:
$\int 3\sin x - \frac{4}{x^2} + \sqrt[3]{x} dx$	$\int 2\cos x + \frac{3}{x} - \sqrt{x} dx$
	$2\sin x + 3\ln x - \frac{2}{3}x^{\frac{3}{2}} + c$

Worked example	Your turn
Find:	Find:
$\int \frac{\sin x}{\cos^2 x} dx$	$\int \frac{\cos x}{\sin^2 x} dx$
	-cosec x + c

Worked example	Your turn
Given that $\int_{a}^{5a} \frac{3x-1}{x} dx = \ln 2,$ find the exact value of <i>a</i> .	Given that $\int_{a}^{3a} \frac{2x+1}{x} dx = \ln 12,$ find the exact value of a .
	$a = \frac{1}{4} \ln 4$

11.2) Integrating f(ax + b)

Chapter CONTENTS

	Worked example		Your turn
Find:	$\int (6x+1)^2 dx$	Find:	$\int (3x-4)^5 dx$
	$\int (5x-2)^3 dx$	1 1	$\frac{1}{8}(3x+4)^6+c$
	$\int (4x+3)^4 dx$		

	Worked example	Your turn
Find:	$\int \frac{1}{2(3x-4)^4} dx$	Find: $\int \frac{1}{3(4x-2)^2} dx$ $-\frac{1}{12(4x-2)} + c$
	$\int \frac{1}{4(2-3x)^3} dx$	

Worked example	Your turn
Find: $\int (3x - 1)^2$	Find: $\int (2x+1)^2$
$\int (3x-1)dx$	$\frac{1}{6}(2x+1)^3 + c$ $\int (2x+1) dx$
$\int \frac{1}{3x-1} dx$	$x^{2} + x + c$ $\int \frac{1}{2x + 1} dx$ $\frac{1}{2} \ln 2x + 1 + c$
$\int \frac{1}{(3x-1)^2} dx$	$\frac{1}{2} \ln 2x + 1 + c$ $\int \frac{1}{(2x + 1)^2} dx$ $-\frac{1}{2(2x + 1)} + C$

Worked example	Your turn
Find: $\int \sin(6x+1) dx$	Find: $\int -\sin\left(\frac{1}{3}x - 4\right) dx$
$\int -\sin\left(\frac{x}{5} - 2\right) dx$	$3\cos\left(\frac{1}{3}x-4\right)+c$
$\int \sin(3-4x) dx$	

Worked example	Your turn
Find: $\int \cos(6x+1) dx$	Find: $\int -\cos(4-3x) dx$
$\int -\cos\left(\frac{x}{5} - 2\right) dx$	$\frac{1}{3}sin(4-3x)+c$
$\int \cos(3-4x) dx$	

Worked example	Your turn
Find:	Find:
$\int \frac{1}{6x-1} dx$	$\int \frac{1}{-\frac{1}{3}x+4} dx$
	$-3\ln\left -\frac{1}{3}x+4\right +c$
$\int \frac{1}{\frac{1}{5}x+2} dx$	
$\overline{5}^{\chi + 2}$	
$\int 1$	
$\int \frac{1}{3-4x} dx$	

Worked example	Your turn
Find: $\int \sec^2(2x-3) dx$	Find: $\int 3\sec^2(2x+1) dx$ $\frac{3}{2}\tan(2x+1) + c$
$\int 6\sec^2(5-4x)dx$	

	Worked example	Your turn
Find:	$\int \sec 5x \tan 5x dx$	Find: $\int \sec(3x) \tan(3x) dx$
		$\frac{1}{3}\sec(3x) + c$
	$\int \sec \frac{x}{4} \tan \frac{x}{4} dx$	

Worked example	Your turn
Find: $\int e^{6x+1} dx$	Find: $\int e^{-\frac{1}{3}x-4} dx$ $-3e^{-\frac{1}{3}x-4} + c$
$\int e^{\frac{1}{5}x-2} dx$	
$\int e^{4-3x} dx$	

Worked example	Your turn
Find: $\int (e^x - 1)^3 dx$	Find: $\int (e^x + 1)^2 dx$
	$\int (e^x + 1)^2 dx$ $\frac{1}{2}e^{2x} + 2e^x + x + C$

11.3) Using trigonometric identities Chapter CONTENTS

Worked example	Your turn
Worked example Find: $\int \sin^2 x \ dx$	Find: $\int \cos^2 x dx$ $\frac{1}{2}x + \frac{1}{4}\sin 2x + c$

Worked example	Your turn
Find: $\int \cot^2 x \ dx$	Find: $\int \tan^2 x dx$ $\tan x - x + c$

Worked example	Your turn
Find:	Find:
$\int (\sec x - \tan x)^2 dx$	$\int (\sec x + \tan x)^2 dx$
	$2\tan x - 2\sec x - x + c$

Worked exampleYour turnFind:
$$\int \sin 5x \cos 5x \ dx$$
 $\int \sin 3x \cos 3x \ dx$ $\int \sin 5x \cos 5x \ dx$ $\int \sin 3x \cos 3x \ dx$ $-\frac{1}{12} \cos 6x + c$ $\int \sin \frac{x}{4} \cos \frac{x}{4} \ dx$ $\int \sin \frac{x}{4} \cos \frac{x}{4} \ dx$

Worked example	Your turn
Worked example Find: $\int (\sin x - \cos x)^2 dx$	Find: $\int (\sin x + \cos x)^2 dx$ $x - \frac{1}{2} \cos 2x + c$

	Worked example	Your turn
Find:	$\int (\cos 2x + 1)^2 dx$	Find: $\int (\cos 2x - 1)^2 dx$ $\frac{1}{8} \sin 4x + \frac{3}{2}x - \sin 2x + c$

	Worked example	Your turn
Find:		Find:
	$\int \frac{(1+\sin x)^2}{\cos^2 x} dx$	$\int \frac{(1+\cos x)^2}{\sin^2 x} dx$
		$-2\cot x - x - 2\cos c x + c$

Worked example	Your turn
Find:	Find:
$\int \frac{\cos 2x}{\sin^2 x} dx$	$\int \frac{\cos 2x}{\cos^2 x} dx$
	$2x - \tan x + c$

Worked example	Your turn
Worked example Show that: $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cos^2 x dx = \frac{\pi}{24} + \frac{2 - \sqrt{3}}{8}$	Your turn Show that: $\int_{\frac{\pi}{12}}^{\frac{\pi}{8}} \sin^2 x dx = \frac{\pi}{48} + \frac{1 - \sqrt{2}}{8}$ $\frac{\pi}{12}$

Worked example	Your turn
Find: $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos^2 3x dx$	Find: $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin^2 3x dx$ $\frac{\pi}{12}$

Worked example	Your turn
Find: $\int \sin^4 x \ dx$	Find: $\int \cos^4 x \ dx$
	$\frac{1}{32}\sin 4x + \frac{1}{4}\sin 2x + \frac{3}{8}x + c$

11.4) Reverse chain rule

Chapter CONTENTS

	Worked example	Your turn
Find:	ſ	Find:
	$\int x^3 (x^4 - 2)^5 dx$	$\int x(x^2+5)^3 dx$
		$\int x(x^2 + 5)^3 dx$ $\frac{1}{8}(x^2 + 5)^4 + c$
	$\int x^2 (x^3 - 5)^4 dx$	

	Worked example	Your turn
Find:	$\int \sin x \cos^4 x dx$	Find: $\int \cos x \sin^2 x dx$ $\frac{1}{3} \sin^3 x + c$
	$\int \sin^3 x \cos x dx$	

Your turn
Find: $\int \frac{x}{3x^2 + 2} dx$ $\frac{1}{6} \ln 3x^2 + 2 + c$

Worked example	Your turn
Find: $\int \frac{4x^3}{x^4 + 1} dx$	Find: $\int \frac{6x}{3x^2 + 2} dx$ $\ln 3x^2 + 2 + c$
$\int \frac{12x^2}{4x^3 - 5} dx$	

	Worked example	Your turn
Find:	$\int \frac{x}{(x^2 - 3)^5} dx$	Find: $\int \frac{x}{(x^2 + 5)^3} dx$ $-\frac{1}{4}(x^2 + 5)^{-2} + c$
	$\int \frac{x^2}{(x^3-2)^4} dx$	

Your turn
Find: $\int x e^{x^2 + 1} dx$ $\frac{1}{2}e^{x^2 + 1} + c$

Worked example	Your turn
Find: $\int \frac{3x^2 + 5}{\sqrt{x^3 + 5x - 2}} dx$	Find: $\int \frac{2x+1}{\sqrt{x^2+x-3}} dx$ $2\sqrt{x^2+x-3}+c$
$\int \frac{12x^3 - 45x^2}{\sqrt{x^4 - 5x^3 + 1}} dx$	

Worked example	Your turn
Find: $\int \frac{\sin x}{\cos x + 5} dx$	Find: $\int \frac{\cos x}{\sin x + 2} dx$ $\ln \sin x + 2 + c$
$\int \frac{\sec^2 x}{\tan x - 3} dx$	

	Worked example	Your turn
Find:	$\int \sin x \ e^{\cos x} \ dx$	Find: $\int \cos x \ e^{\sin x} \ dx$ $e^{\sin x} + c$
	$\int \sec^2 x \ e^{\tan x} \ dx$	

Worked example	Your turn
Find: $\int \sin x (\cos x - 1)^5 dx$	Find: $\int \cos x (\sin x - 5)^7 dx$ $\frac{1}{8} (\sin x - 5)^8 + c$
$\int \sec^2 x (\tan x + 3)^6 dx$	

	Worked example	Your turn
Find:	$\int \sec^2 x \tan x dx$	Find: $\int 3 \sec^4 x \tan x dx$ $\frac{3}{4} \sec^4 x + c$
	$\int 2 \sec^3 x \tan x dx$	

	Worked example	Your turn
Find:	$\int \frac{\csc^2 x}{(3 - \cot x)^4} dx$	Find: $\int \frac{cosec^2 x}{(2+\cot x)^3} dx$ $\frac{1}{2}(2+\cot x)^{-2} + c$
	$\int \frac{\sec^2 x}{(3+\tan x)^2} dx$	

	Worked example	Your turn
Find:	$\int \frac{\sin 4x}{\cos 4x + 2} dx$	Find: $\int \frac{\cos 2x}{\sin 2x + 3} dx$ $\frac{1}{2} \ln \sin 2x + 3 + c$
	$\int \frac{\sec^2 3x}{\tan 3x - 5} dx$	

Worked example	Your turn
Find: $\int \tan x dx$	Find: $\int \cot x dx$ $\ln \sin x + c$

11.5) Integration by substitution

Chapter CONTENTS

Worked example	Your turn
Find:	Find:
$\int x(2x-5)^9 dx$	$\int x(5x-2)^8 dx$
using the substitution $u = 2x - 5$	using the substitution $u = 5x - 2$
	$\frac{(5x-2)^{10}}{250} + \frac{2(5x-2)^9}{225} + c$

Worked example	Your turn
Find:	Find:
$\int x\sqrt{5x+2} dx$	$\int x\sqrt{2x+5} dx$
using the substitution $u = 5x + 2$	using the substitution $u = 2x + 5$
	$\frac{(2x+5)^{\frac{5}{2}}}{10} - \frac{5(2x+5)^{\frac{3}{2}}}{6} + c$

Worked example	Your turn
Find:	Find:
$\int x\sqrt{5x+2} dx$	$\int x\sqrt{2x+5} dx$
using the substitution $u^2 = 5x + 2$	using the substitution $u^2 = 2x + 5$
	$\frac{(2x+5)^{\frac{5}{2}}}{10} - \frac{5(2x+5)^{\frac{3}{2}}}{6} + c$

Worked example	Your turn
Find:	Find:
$\int \cos x \sin x (2 + \sin x)^4 dx$	$\int \cos x \sin x (1 + \sin x)^3 dx$
using the substitution $u = \sin x + 2$	using the substitution $u = \sin x + 1$
	$\frac{1}{5}(\sin x + 1)^5 - \frac{1}{4}(\sin x + 1)^4 + c$

Worked example	Your turn
Find: $\int_{0}^{\frac{\pi}{2}} \cos x \sin x (2 + \sin x)^{4} dx$ using the substitution $u = \sin x + 2$	Find: $\int_{0}^{\frac{\pi}{2}} \cos x \sin x (1 + \sin x)^{3} dx$ using the substitution $u = \sin x + 1$ $\frac{49}{20}$

Worked example	Your turn
Find: $\int \frac{3\sin 2x}{2+\sin x} dx$	Find: $\int \frac{2\sin 2x}{1 + \cos x} dx$
using the substitution $u = 2 + \sin x$	using the substitution $u = 1 + \cos x$ $4 \ln 1 + \cos x - 4 \cos x + c$

Worked example	Your turn
Calculate:	Calculate:
$\int_{0}^{\frac{\pi}{2}} \sin x \sqrt{2 + \cos x} dx$	$\int_{0}^{\frac{\pi}{2}} \cos x \sqrt{1 + \sin x} dx$
J_0	using the substitution $u = \sin x + 1$
using the substitution $u = \cos x + 2$	$\frac{2}{3}(2\sqrt{2} - 1)$

Worked example	Your turn
Use the substitution $u = \sqrt{x} - 1$ to evaluate: $\int_{36}^{49} \frac{1}{\sqrt{x} - 1} dx$	Use the substitution $u = 1 + \sqrt{x}$ to evaluate: $\int_{16}^{25} \frac{1}{1 + \sqrt{x}} dx$
	$2 + 2 \ln \left \frac{5}{6} \right $

Worked example	Your turn
A finite region is bounded by the curve with equation $y = x^3 \ln(x^2 + 3)$, the <i>x</i> -axis and the lines $x = 0$ and $x = \sqrt{5}$.	A finite region is bounded by the curve with equation $y = x^3 \ln(x^2 + 2)$, the <i>x</i> -axis and the lines $x = 0$ and $x = \sqrt{2}$.
Use the substitution $u = x^2 + 3$ to show that the area of R is $\frac{1}{2} \int_3^8 (u - 3) \ln u du$	Use the substitution $u = x^2 + 2$ to show that the area of R is $\frac{1}{2} \int_2^4 (u - 2) \ln u du$ Shown

Worked example	Your turn
Using integration by substitution, prove that: $-\int \frac{1}{\sqrt{1-x^2}} dx = \arccos x + c$	Using integration by substitution, prove that: $\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$
	Shown

Worked example	Your turn
Use the substitution $u = \cos x$ to evaluate π	Use the substitution $u = \sin x$ to evaluate
$\int_0^{\frac{\pi}{3}} \sin^3 x \cos^2 x dx$	$\int_0^{\frac{\pi}{6}} \sin^2 x \cos^3 x dx$
	$\frac{17}{480}$

Worked example	Your turn
Worked example Use the substitution $x = \cos u$ to evaluate $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} x^2 \sqrt{1 - x^2} dx$	Vour turn Use the substitution $x = \sin u$ to evaluate $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} x^2 \sqrt{1 - x^2} dx$ $\frac{2\pi + 3\sqrt{3}}{96}$

11.6) Integration by parts

Chapter CONTENTS

Your turn
Find: $\int x \cos x dx$
$x \sin x + \cos x + c$

Worked example	Your turn
Find: $\int x^2 \cos x dx$	Find: $\int x^2 \sin x dx$
	$2x\sin x - x^2\cos x + 2\cos x + c$

Worked example	Your turn
Find:	Find:
$\int x^2 e^{-x} dx$	$\int x^2 e^x dx$
	$x^2e^x - 2xe^x + 2e^x + c$

Worked example	Your turn
Find: $\int x^3 \ln x dx$	Find: $\int x^2 \ln x dx$
	$\frac{1}{3}x^3\ln x - \frac{1}{9}x^3 + c$

Worked example	Your turn
Evaluate: $\int_{1}^{4} \ln x dx$	Evaluate: $\int_{1}^{2} \ln x dx$ $2 \ln 2 - 1$

Worked example	Your turn
Find: $\int e^x \cos x dx$	Find: $\int e^x \sin x dx$
	$-\frac{1}{2}e^x\cos x + \frac{1}{2}e^x\sin x + c$

Worked example	Your turn
Evaluate: $\int_{0}^{\frac{\pi}{2}} x \cos x dx$	Evaluate: $\int_{0}^{\frac{\pi}{2}} x \sin x dx$ 1

11.7) Partial fractions

Chapter CONTENTS

	Worked example	Your turn
Find:	$\int \frac{x+5}{(x-1)(x+2)} dx$	Find: $\int \frac{x-5}{(x+1)(x-2)} dx$
		$\ln\left \frac{(x+1)^2}{x-2}\right + c$

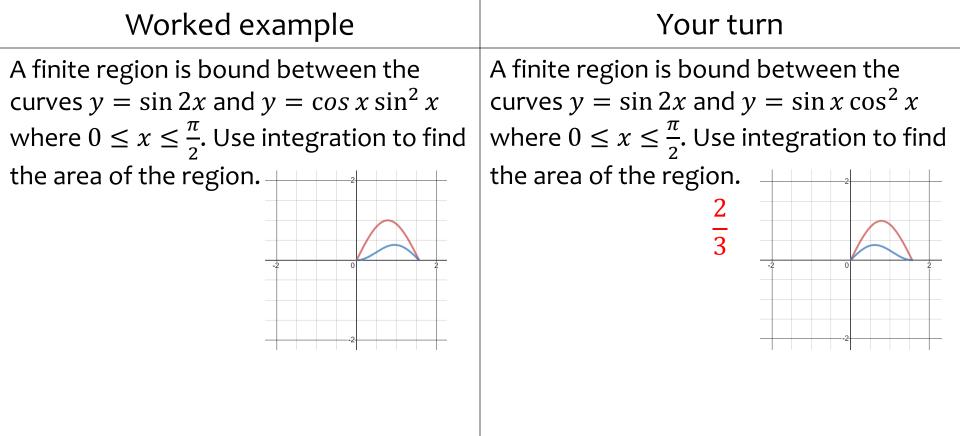
Worked example	Your turn
Find: $\int \frac{3x + 15 - 4x^2}{(2x + 1)(x - 2)^2} dx$	Find: $\int \frac{8x^2 - 19x + 1}{(2x+1)(x-2)^2} dx$ $\ln (2x+1)(x-2)^3 + \frac{1}{x-2} + c$

Worked example	Your turn
Evaluate: $\int_{0}^{2} \frac{8x^{2} + 34x + 20}{(2x+1)(x+1)(x+3)}$	Evaluate: $ \int_{0}^{2} \frac{4 - 2x}{(2x+1)(x+1)(x+3)} $ $ \ln\left(\frac{125}{81}\right) $

Worked example	Your turn
Find: $\int \frac{4}{x^2 - 4} dx$	Find: $\int \frac{2}{x^2 - 1} dx$ $\ln \left \frac{x - 1}{x + 1} \right + c$
	$ln \left \frac{x-1}{x+1} \right + c$

Worked example	Your turn
Find: $\int \frac{x^2}{x-1} dx$	Find: $\int \frac{x^2}{x+1} dx$
	$\frac{1}{2}x^2 - x + \ln x+1 + c$

Worked example	Your turn
Find: $\int \frac{x}{x-2} dx$	Find: $\int \frac{x}{x-1} dx$ $x + \ln x-1 + c$
$\int \frac{x-2}{x} dx$	$\int \frac{x-1}{x} dx$ $x - \ln x + c$


Worked example	Your turn
Find: $\int \frac{x^3 - 2}{x - 1} dx$	Find: $\int \frac{x^3 + 2}{x + 1} dx$
$\int \frac{1}{x-1} dx$	
	$\frac{1}{3}x^3 - \frac{1}{2}x^2 + x + \ln x+1 + c$

	Worked example	Your turn
Find:	$\int \frac{4x^2 - 2x - 18}{4x^2 - 9} dx$	Find: $\int \frac{9x^2 - 3x + 2}{9x^2 - 4} dx$ $x + \frac{1}{3} \ln \left \frac{3x - 2}{(3x + 2)^2} \right + c$

11.8) Finding areas

Chapter CONTENTS

Worked example	Your turn
A finite region is bound by the curve	A finite region is bound by the curve
$y = \frac{3}{\sqrt{9+4x}}$, the <i>x</i> -axis, and the lines $x = 0$	$y = \frac{9}{\sqrt{4+3x}}$, the <i>x</i> -axis, and the lines $x = 0$
and $x = 4$. Use integration to find the	and $x = 4$. Use integration to find the
area of the region.	area of the region.
	12

Graphs used with permission from DESMOS: <u>https://www.desmos.com/</u>

11.8+) Finding areas: Areas under parametric curves Chapter CONTENTS

Worked example	Your turn
Determine the area bound between the curve with parametric equations $x = t^2$ and $y = t - 1$, the <i>x</i> -axis, and the lines $x = 0$ and $x = 5$.	Determine the area bound between the curve with parametric equations $x = t^2$ and $y = t + 1$, the <i>x</i> -axis, and the lines $x = 0$ and $x = 3$.
	$2\sqrt{3} + 3$

Worked example	Your turn
The curve <i>C</i> has parametric equations	The curve <i>C</i> has parametric equations
$x = t(2 + t), y = \frac{1}{2 + t}, t \ge 0$	$x = t(1 + t), y = \frac{1}{1 + t}, t \ge 0$
Find the exact area of the region,	Find the exact area of the region,
bounded by <i>C</i> , the <i>x</i> -axis and the lines	bounded by <i>C</i> , the <i>x</i> -axis and the lines
x = 0 and $x = 8$.	x = 0 and $x = 2$.
	$2 - \ln 2$

Worked example	Your turn
The curve <i>C</i> has parametric equations	The curve C has parametric equations
$x = 1 - \frac{1}{4}t$, $y = 4^t - 1$, $t \ge 0$	$x = 1 - \frac{1}{2}t$, $y = 2^t - 1$, $t \ge 0$
A finite region is bounded by the curve	A finite region is bounded by the curve
C, the x-axis and the line $x = -1$. Find	C, the x-axis and the line $x = -1$. Find
the exact area of this region.	the exact area of this region.
	$\frac{15}{2\ln 2} - 2$

11.9) The trapezium rule

Chapter CONTENTS

Worked example	Your turn
Using the trapezium rule, approximate the region bounded between $x = 1$, $x = 3$, the x-axis and the curve $y = x^2$, using 8 strips.	Using the trapezium rule, approximate the region bounded between $x = 1$, $x = 3$, the x-axis and the curve $y = x^2$, using 4 strips.
	8.75

Worked example	Worked	dexample	
----------------	--------	----------	--

$$I = \int_0^{\frac{\pi}{3}} \sec x \, dx$$

Use the trapezium rule with two strips to estimate *I*.

$$I = \int_0^{\frac{\pi}{3}} \sec x \, dx$$

Use the trapezium rule with four strips to estimate *I*.

1.34 (2 dp)

vorked example	Worked example	Your turn
 b) State, with a reason, whether your approximation is an underestimate or an overestimate c) Find the percentage error of your estimate to the exact value of <i>I</i> d) Give one way the trapezium rule can be used to give a more accurate approximation b) State, with a reason, whether your approximation an underestimate or an overestimate c) Find the percentage error of your estimate to the exact value of <i>I</i> d) Give one way the trapezium rule can be used to give a more accurate approximation a) 1.896 (3 dp) b) Underestimate. The graph of y = cos x is convex in the interval [-^π/₂, ^π/₂] c) 5.19% (3 sf) 	Use the trapezium rule with four strips to estimate <i>I</i> State, with a reason, whether your approximation is an underestimate or an overestimate Find the percentage error of your estimate to the exact value of <i>I</i> Give one way the trapezium rule can be used to give	 a) Use the trapezium rule with four strips to estimate <i>I</i> b) State, with a reason, whether your approximation is an underestimate or an overestimate c) Find the percentage error of your estimate to the exact value of <i>I</i> d) Give one way the trapezium rule can be used to give a more accurate approximation a) 1.896 (3 dp) b) Underestimate. The graph of y = cos x is convex in the interval [-^π/₂, ^π/₂] c) 5.19% (3 sf) d) Increase number of trapezia, decrease h,

11.10) Solving differential equations Chapter CONTENTS

Worked example	Your turn
Find the general solution to: $\frac{dy}{dx} = xy - y$	Find the general solution to: $\frac{dy}{dx} = xy + y$ $y = Ae^{\frac{1}{2}x^{2} + x}$

Worked example	Your turn
Worked example Find the general solution to: $(1 - x^2)\frac{dy}{dx} = x \cot y$	Find the general solution to: $(1 + x^{2})\frac{dy}{dx} = x \tan y$ $y = \arcsin\left(k\sqrt{1 + x^{2}}\right)$

Worked example	Your turn
Find the particular solution to: $\frac{dy}{dx} = -\frac{3(y+2)}{(2x-1)(x-2)}$ given that $x = 4$ when $y = 5$	Find the particular solution to: $\frac{dy}{dx} = -\frac{3(y-2)}{(2x+1)(x+2)}$ given that $x = 1$ when $y = 4$ $y = 3 + \frac{3}{2x+1}$

Worked example	Your turn
Find the particular solution to: $\frac{dy}{dx} = -\frac{5}{y \sin^2 x}$ given that $y = 4$ at $x = \frac{\pi}{4}$	Find the particular solution to: $\frac{dy}{dx} = -\frac{3}{y \cos^2 x}$ given that $y = 2$ at $x = \frac{\pi}{4}$ $y^2 = -6 \tan x + 10$

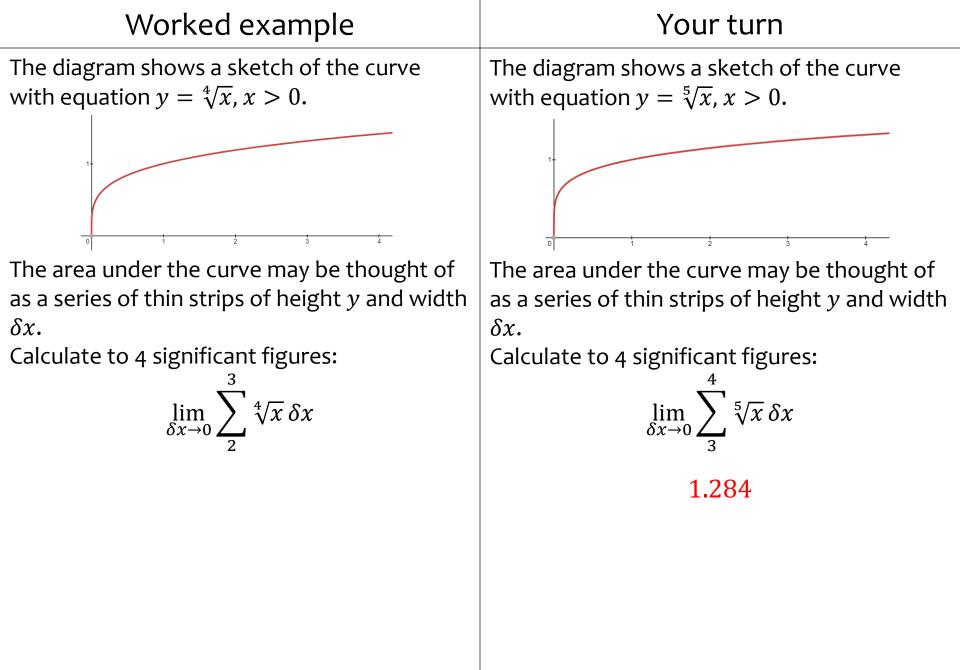
Worked example	Your turn
Find the particular solution to: $\frac{dy}{dx} = xy \cos x$ given that $y = 1$ at $x = \frac{\pi}{2}$	Find the particular solution to: $\frac{dy}{dx} = xy \sin x$ given that $y = 1$ at $x = \frac{\pi}{2}$ $\ln y = \sin x - x \cos x - 1$

11.11) Modelling with differential equations Chapter CONTENTS

Worked example	Your turn
The rate of increase of a human population	The rate of increase of a rabbit population
(with population <i>H</i> , where time is <i>t</i>) is	(with population <i>P</i> , where time is <i>t</i>) is
proportional to the current population.	proportional to the current population.
Form a differential equation, and find its	Form a differential equation, and find its
general solution.	general solution.

 $P = Ae^{kt}$

Worked example	Your turn
The rate of increase of a population <i>P</i> of microorganisms at time <i>t</i> , in hours, is given by $\frac{dP}{dt} = 6P, k > 0$ Initially the population was of size 4. a) Find a model for <i>P</i> in the form $P = Ae^{6t}$ b) Find, to the nearest hundred, the size of the population at time $t = 4$ c) Find the time at which the population will be 10000 times its starting value. d) State one limitation of this model for large values of <i>t</i>	The rate of increase of a population <i>P</i> of microorganisms at time <i>t</i> , in hours, is given by $\frac{dP}{dt} = 3P, k > 0$ Initially the population was of size 8. a) Find a model for <i>P</i> in the form $P = Ae^{3t}$ b) Find, to the nearest hundred, the size of the population at time $t = 2$ c) Find the time at which the population will be 1000 times its starting value. d) State one limitation of this model for large values of <i>t</i> a) $P = 8e^{3t}$ b) 3200 c) 2.3 hours = 2 hours 18 minutes d) The population could not increase in this way forever due to limitations such as available food or space


Worked example	Your turn
Water in a manufacturing plant is held in a large cylindrical tank of diameter 10m. Water flows out of the bottom of the tank through a tap at a rate proportional to the cube root of the volume. (a) Show that <i>t</i> minutes after the tap is opened, $\frac{dh}{dt} = -k\sqrt[3]{h} \text{ for some constant } k.$ (b) Show that the general solution of this differential equation may be written $h = (P - Qt)^{\frac{3}{2}}$, where <i>P</i> and <i>Q</i> are constants. Initially the height of the water is 64m. 21 minutes later, the height is 27m. (c) Find the values of the constants <i>P</i> and <i>Q</i> . (d) Find the time in minutes when the water is at a depth of 8m.	Water in a manufacturing plant is held in a large cylindrical tank of diameter 20m. Water flows out of the bottom of the tank through a tap at a rate proportional to the cube root of the volume. (a) Show that t minutes after the tap is opened, $\frac{dh}{dt} = -k\sqrt[3]{h} \text{ for some constant } k.$ (b) Show that the general solution of this differential equation may be written $h = (P - Qt)^{\frac{3}{2}}$, where P and Q are constants. Initially the height of the water is 27m. 10 minutes later, the height is 8m. (c) Find the values of the constants P and Q. (d) Find the time in minutes when the water is at a depth of 1m. a) Shown: $k = \frac{k\sqrt[3]{100\pi h}}{100\pi}$
	a) Shown: $k = \frac{1}{100\pi}$ b) Shown c) $P = 9, Q = \frac{1}{2}$ d) 16 minutes

Worked example	Your turn
Liquid is pouring into a container at a constant rate of $40 \ cm^3 \ s^{-1}$ and is leaking out at a rate proportional to the volume of liquid already in the container. The volume, $V \ cm^3$, of liquid in the container at time t seconds is satisfied by the differential equation $\frac{dV}{dt} = 40 - kV$ The container is initially empty. a) By solving the differential equation show that $V = A + Be^{-kt}$ giving the values of A and B in terms of k b) Given also that $\frac{dV}{dt} = 20$ at $t = 10$, find the volume of liquid in the container 20 seconds after the start.	Liquid is pouring into a container at a constant rate of $20 \ cm^3 \ s^{-1}$ and is leaking out at a rate proportional to the volume of liquid already in the container. The volume, $V \ cm^3$, of liquid in the container at time t seconds is satisfied by the differential equation $\frac{dV}{dt} = 20 - kV$ The container is initially empty. a) By solving the differential equation show that $V = A + Be^{-kt}$ giving the values of A and B in terms of k b) Given also that $\frac{dV}{dt} = 10$ at $t = 5$, find the volume of liquid in the container 10 seconds after the start. a) $V = \frac{20}{k} - \frac{20}{k}e^{-kt}$
	b) $V = \frac{\frac{75}{75}}{\ln 2} = 108 \ cm^3$ (3 sf)

Worked example	Your turn
A fluid reservoir initially containers 10000 litres of unpolluted fluid. The reservoir is leaking at a constant rate of 200 litres per hour and it is suspected that contaminated fluid flows into the reservoir at a constant rate of 300 litres per day. The contaminated fluid contains 4 grams of contaminant in every litre of fluid. It is assumed that the contaminant instantly disperses throughout the reservoir upon entry. Given that there are x grams of contaminant in the reservoir after t days, (a) Show that the situation can be modelled by the differential equation $\frac{dx}{dt} = 1200 - \frac{2x}{100 + t}$ (b) Hence find the number of grams of contaminant in the tank after 7 days. (c) Explain how the model could be refined.	A storage tank initially containers 1000 litres of pure water. Liquid is removed from the tank at a constant rate of 30 litres per hour and a chemical solution is added to the tank at a constant rate of 40 litres per hour. The chemical solution contains 4 grams of copper sulphate per litre of water. It is assumed that the copper suphate instantly disperses throughout the tank on entry. Given that there are x grams of copper sulphate in the tank after t hours, (a) Show that the situation can be modelled by the differential equation $\frac{dx}{dt} = 160 - \frac{3x}{100 + t}$ (b) Hence find the number of grams of copper sulphate in the tank after 6 hours. (c) Explain how the model could be refined. (a) Shown (b) 882 g (3 sf) (c) The model could be refined to take into account the fact that the cupper sulphate does not disperse immediately on entering the tank.

11.12) Integration as the limit of a sum

Chapter CONTENTS

Worked example	Your turn
Calculate to four significant figures:	Calculate to four significant figures:
$\lim_{\delta x \to 0} \sum_{5}^{0} \cos x \delta x$	$\lim_{\delta x \to 0} \sum_{1}^{2} \sin x \delta x$
	0.9564