11) Integration

11.1) Integrating standard functions
11.2) Integrating $f(a x+b)$
11.3) Using trigonometric identities
11.4) Reverse chain rule
11.5) Integration by substitution
11.6) Integration by parts

11.7) Partial fractions

11.8) Finding areas
11.8+) Finding areas: Areas under parametric curves
11.9) The trapezium rule
11.10) Solving differential equations
11.11) Modelling with differential equations
11.12) Integration as the limit of a sum
11.1) Integrating standard functions Chapter CONTENTS

By thinking about integration as the reverse of differentiation, find:

$$
\begin{aligned}
& \int x^{n} d x \\
& \int e^{x} d x
\end{aligned}
$$

By thinking about integration as the reverse of differentiation, find:

$$
\begin{array}{r}
\int \frac{1}{x} d x \\
\ln |x|+c
\end{array}
$$

By thinking about integration as the reverse of differentiation, find:

By thinking about integration as the reverse of differentiation, find:

$$
\begin{gathered}
\int \cos x d x \\
\sin x+c \\
\int \sec x \tan x d x \\
\sec x+c \\
\int \operatorname{cosec} 2 x d x \\
-\cot x+c
\end{gathered}
$$

By thinking about integration as the reverse of differentiation, find:

$$
\begin{gathered}
\int-\sin x d x \\
\int-\operatorname{cosec} x \cot x d x \\
\int-\sec ^{2} x d x
\end{gathered}
$$

By thinking about integration as the reverse of differentiation, find:

$$
\begin{gathered}
\int-\cos x d x \\
-\sin x+c \\
\int-\sec x \tan x d x \\
-\sec x+c \\
\int-\operatorname{cosec} 2 x d x \\
\cot x+c
\end{gathered}
$$

Your turn

Find:

$$
\int 3 \sin x-\frac{4}{x^{2}}+\sqrt[3]{x} d x
$$

Find:

$$
\begin{gathered}
\int 2 \cos x+\frac{3}{x}-\sqrt{x} d x \\
2 \sin x+3 \ln |x|-\frac{2}{3} x^{\frac{3}{2}}+c
\end{gathered}
$$

Find:

$$
\int \frac{\sin x}{\cos ^{2} x} d x
$$

Find:

$$
\begin{gathered}
\int \frac{\cos x}{\sin ^{2} x} d x \\
-\operatorname{cosec} x+c
\end{gathered}
$$

Your turn

Given that

$$
\int_{a}^{5 a} \frac{3 x-1}{x} d x=\ln 2,
$$

find the exact value of a.

Given that

$$
\int_{a}^{3 a} \frac{2 x+1}{x} d x=\ln 12,
$$

find the exact value of a.

$$
a=\frac{1}{4} \ln 4
$$

11.2) Integrating $f(a x+b)$

Find:

$$
\begin{aligned}
& \int(6 x+1)^{2} d x \\
& \int(5 x-2)^{3} d x \\
& \int(4 x+3)^{4} d x
\end{aligned}
$$

$$
\begin{gathered}
\int(3 x-4)^{5} d x \\
\frac{1}{18}(3 x+4)^{6}+c
\end{gathered}
$$

Your turn

Find:

$$
\begin{aligned}
& \int \frac{1}{2(3 x-4)^{4}} d x \\
& \int \frac{1}{4(2-3 x)^{3}} d x
\end{aligned}
$$

Find:

$$
\begin{aligned}
& \int \frac{1}{3(4 x-2)^{2}} d x \\
& -\frac{1}{12(4 x-2)}+c
\end{aligned}
$$

Your turn

Find:

$$
\begin{aligned}
& \int(3 x-1)^{2} \\
& \int(3 x-1) d x \\
& \int \frac{1}{3 x-1} d x \\
& \int \frac{1}{(3 x-1)^{2}} d x
\end{aligned}
$$

Find:

$$
\begin{gathered}
\int(2 x+1)^{2} \\
\frac{1}{6}(2 x+1)^{3}+c \\
\int(2 x+1) d x \\
x^{2}+x+c \\
\int \frac{1}{2 x+1} d x \\
\frac{1}{2} \ln |2 x+1|+c \\
\int \frac{1}{(2 x+1)^{2}} d x \\
-\frac{1}{2(2 x+1)}+C
\end{gathered}
$$

Worked example
Find:

$$
\begin{aligned}
& \int \sin (6 x+1) d x \\
& \int-\sin \left(\frac{x}{5}-2\right) d x \\
& \int \sin (3-4 x) d x
\end{aligned}
$$

Find:

$$
\begin{aligned}
& \int-\sin \left(\frac{1}{3} x-4\right) d x \\
& 3 \cos \left(\frac{1}{3} x-4\right)+c
\end{aligned}
$$

Worked example
Find:

$$
\begin{aligned}
& \int \cos (6 x+1) d x \\
& \int-\cos \left(\frac{x}{5}-2\right) d x \\
& \int \cos (3-4 x) d x
\end{aligned}
$$

Find:

$$
\begin{aligned}
& \int-\cos (4-3 x) d x \\
& \frac{1}{3} \sin (4-3 x)+c
\end{aligned}
$$

Your turn

Find:

$$
\begin{aligned}
& \int \frac{1}{6 x-1} d x \\
& \int \frac{1}{\frac{1}{5} x+2} d x \\
& \int \frac{1}{3-4 x} d x
\end{aligned}
$$

Find:

$$
\begin{gathered}
\int \frac{1}{-\frac{1}{3} x+4} d x \\
-3 \ln \left|-\frac{1}{3} x+4\right|+c
\end{gathered}
$$

Worked example
Find:

$$
\begin{aligned}
& \int \sec ^{2}(2 x-3) d x \\
& \int 6 \sec ^{2}(5-4 x) d x
\end{aligned}
$$

Find:

$$
\begin{aligned}
& \int 3 \sec ^{2}(2 x+1) d x \\
& \frac{3}{2} \tan (2 x+1)+c
\end{aligned}
$$

Worked example

Your turn

Find:

$$
\int \sec \frac{x}{4} \tan \frac{x}{4} d x
$$

Find:

$$
\begin{gathered}
\int \sec (3 x) \tan (3 x) d x \\
\frac{1}{3} \sec (3 x)+c
\end{gathered}
$$

Your turn

Find:

$$
\begin{aligned}
& \int e^{6 x+1} d x \\
& \int e^{\frac{1}{5} x-2} d x \\
& \int e^{4-3 x} d x
\end{aligned}
$$

Find:

$$
\begin{aligned}
& \int e^{-\frac{1}{3} x-4} d x \\
& -3 e^{-\frac{1}{3} x-4}+c
\end{aligned}
$$

Find:

$$
\int\left(e^{x}-1\right)^{3} d x
$$

Find:

$$
\begin{gathered}
\int\left(e^{x}+1\right)^{2} d x \\
\frac{1}{2} e^{2 x}+2 e^{x}+x+C
\end{gathered}
$$

Find:

$$
\int \sin ^{2} x d x
$$

Find:

$$
\begin{gathered}
\int \cos ^{2} x d x \\
\frac{1}{2} x+\frac{1}{4} \sin 2 x+c
\end{gathered}
$$

Find:

$$
\int \cot ^{2} x d x
$$

Find:

$$
\begin{aligned}
& \int \tan ^{2} x d x \\
& \tan x-x+c
\end{aligned}
$$

Your turn

Find:

$$
\int(\sec x-\tan x)^{2} d x
$$

Find:

$$
\begin{gathered}
\int(\sec x+\tan x)^{2} d x \\
2 \tan x-2 \sec x-x+c
\end{gathered}
$$

Worked example

Your turn

Find:

Find:

$$
\begin{aligned}
& \int \sin 3 x \cos 3 x d x \\
& -\frac{1}{12} \cos 6 x+c
\end{aligned}
$$

Find:

$$
\int(\sin x-\cos x)^{2} d x
$$

Find:

$$
\begin{gathered}
\int(\sin x+\cos x)^{2} d x \\
x-\frac{1}{2} \cos 2 x+c
\end{gathered}
$$

Worked example
Find:

$$
\int(\cos 2 x+1)^{2} d x
$$

Your turn

Find:

$$
\begin{gathered}
\int(\cos 2 x-1)^{2} d x \\
\frac{1}{8} \sin 4 x+\frac{3}{2} x-\sin 2 x+c
\end{gathered}
$$

Find:

$$
\int \frac{(1+\sin x)^{2}}{\cos ^{2} x} d x
$$

Find:

$$
\begin{gathered}
\int \frac{(1+\cos x)^{2}}{\sin ^{2} x} d x \\
-2 \cot x-x-2 \operatorname{cosec} x+c
\end{gathered}
$$

Find:

$$
\int \frac{\cos 2 x}{\sin ^{2} x} d x
$$

Find:

$$
\begin{gathered}
\int \frac{\cos 2 x}{\cos ^{2} x} d x \\
2 x-\tan x+c
\end{gathered}
$$

Show that:

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cos ^{2} x d x=\frac{\pi}{24}+\frac{2-\sqrt{3}}{8}
$$

Show that:

$$
\int_{\frac{\pi}{12}}^{\frac{\pi}{8}} \sin ^{2} x d x=\frac{\pi}{48}+\frac{1-\sqrt{2}}{8}
$$

$$
\frac{\pi}{12}
$$

Find:

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos ^{2} 3 x d x
$$

Find:

$$
\begin{gathered}
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin ^{2} 3 x d x \\
\frac{\pi}{12}
\end{gathered}
$$

Find:

$$
\int \sin ^{4} x d x
$$

Find:

$$
\begin{gathered}
\int \cos ^{4} x d x \\
\frac{1}{32} \sin 4 x+\frac{1}{4} \sin 2 x+\frac{3}{8} x+c
\end{gathered}
$$

Find:

$$
\begin{aligned}
& \int x^{3}\left(x^{4}-2\right)^{5} d x \\
& \int x^{2}\left(x^{3}-5\right)^{4} d x
\end{aligned}
$$

Find:

$$
\begin{aligned}
& \int x\left(x^{2}+5\right)^{3} d x \\
& \frac{1}{8}\left(x^{2}+5\right)^{4}+c
\end{aligned}
$$

Worked example

Your turn

Find:

$\int \sin x \cos ^{4} x d x$
Find:

$$
\begin{gathered}
\int \cos x \sin ^{2} x d x \\
\frac{1}{3} \sin ^{3} x+c
\end{gathered}
$$

Find:

$$
\int \frac{x^{3}}{x^{4}+1} d x
$$

$$
\int \frac{x^{2}}{4 x^{3}-5} d x
$$

$$
\begin{gathered}
\int \frac{x}{3 x^{2}+2} d x \\
\frac{1}{6} \ln \left|3 x^{2}+2\right|+c
\end{gathered}
$$

Find:

$$
\int \frac{4 x^{3}}{x^{4}+1} d x
$$

$$
\int \frac{12 x^{2}}{4 x^{3}-5} d x
$$

$$
\begin{gathered}
\int \frac{6 x}{3 x^{2}+2} d x \\
\ln \left|3 x^{2}+2\right|+c
\end{gathered}
$$

Find:

$$
\begin{aligned}
& \int \frac{x}{\left(x^{2}-3\right)^{5}} d x \\
& \int \frac{x^{2}}{\left(x^{3}-2\right)^{4}} d x
\end{aligned}
$$

Find:

$$
\begin{gathered}
\int \frac{x}{\left(x^{2}+5\right)^{3}} d x \\
-\frac{1}{4}\left(x^{2}+5\right)^{-2}+c
\end{gathered}
$$

Your turn

Find:

$$
\begin{aligned}
& \int x^{3} e^{x^{4}+5} d x \\
& \int x^{2} e^{x^{3}-4} d x
\end{aligned}
$$

Find:

$$
\begin{aligned}
& \int x e^{x^{2}+1} d x \\
& \frac{1}{2} e^{x^{2}+1}+c
\end{aligned}
$$

Find:

$$
\begin{aligned}
& \int \frac{3 x^{2}+5}{\sqrt{x^{3}+5 x-2}} d x \\
& \int \frac{12 x^{3}-45 x^{2}}{\sqrt{x^{4}-5 x^{3}+1}} d x
\end{aligned}
$$

Find:

$$
\begin{aligned}
& \int \frac{2 x+1}{\sqrt{x^{2}+x-3}} d x \\
& 2 \sqrt{x^{2}+x-3}+c
\end{aligned}
$$

Find:

$$
\begin{aligned}
& \int \frac{\sin x}{\cos x+5} d x \\
& \int \frac{\sec ^{2} x}{\tan x-3} d x
\end{aligned}
$$

Find:

$$
\begin{gathered}
\int \frac{\cos x}{\sin x+2} d x \\
\ln |\sin x+2|+c
\end{gathered}
$$

Worked example

Your turn

Find:

$$
\begin{aligned}
& \int \sin x e^{\cos x} d x \\
& \int \sec ^{2} x e^{\tan x} d x
\end{aligned}
$$

Find:

$$
\begin{gathered}
\int \cos x e^{\sin x} d x \\
e^{\sin x}+c
\end{gathered}
$$

Your turn

Find:

$$
\int \sin x(\cos x-1)^{5} d x
$$

$$
\int \sec ^{2} x(\tan x+3)^{6} d x
$$

Find:

$$
\begin{gathered}
\int \cos x(\sin x-5)^{7} d x \\
\frac{1}{8}(\sin x-5)^{8}+c
\end{gathered}
$$

Worked example
Find:

$$
\begin{aligned}
& \int \sec ^{2} x \tan x d x \\
& \int 2 \sec ^{3} x \tan x d x
\end{aligned}
$$

Find:

$$
\begin{gathered}
\int 3 \sec ^{4} x \tan x d x \\
\frac{3}{4} \sec ^{4} x+c
\end{gathered}
$$

Worked example

Your turn

Find:

$$
\begin{aligned}
& \int \frac{\operatorname{cosec}^{2} x}{(3-\cot x)^{4}} d x \\
& \int \frac{\sec ^{2} x}{(3+\tan x)^{2}} d x
\end{aligned}
$$

Find:

$$
\begin{gathered}
\int_{\frac{1}{2}} \frac{\operatorname{cosec}^{2} x}{(2+\cot x)^{3}} d x \\
(2+\cot x)^{-2}+c
\end{gathered}
$$

Your turn

Find:

$$
\begin{aligned}
& \int \frac{\sin 4 x}{\cos 4 x+2} d x \\
& \int \frac{\sec ^{2} 3 x}{\tan 3 x-5} d x
\end{aligned}
$$

Find:

$$
\begin{gathered}
\int \frac{\cos 2 x}{\sin 2 x+3} d x \\
\frac{1}{2} \ln |\sin 2 x+3|+c
\end{gathered}
$$

Find:

Find:

$$
\begin{gathered}
\int \cot x d x \\
\ln |\sin x|+c
\end{gathered}
$$

Your turn

Find:

$$
\int x(2 x-5)^{9} d x
$$

using the substitution $u=2 x-5$

Find:

$$
\int x(5 x-2)^{8} d x
$$

using the substitution $u=5 x-2$

$$
\frac{(5 x-2)^{10}}{250}+\frac{2(5 x-2)^{9}}{225}+c
$$

Your turn

Find:
$\int x \sqrt{5 x+2} d x$
using the substitution $u=5 x+2$

Find:

$$
\int x \sqrt{2 x+5} d x
$$

using the substitution $u=2 x+5$

$$
\frac{(2 x+5)^{\frac{5}{2}}}{10}-\frac{5(2 x+5)^{\frac{3}{2}}}{6}+c
$$

Your turn

Find:
$\int x \sqrt{5 x+2} d x$
using the substitution $u^{2}=5 x+2$

Find:

$$
\int x \sqrt{2 x+5} d x
$$

using the substitution $u^{2}=2 x+5$

$$
\frac{(2 x+5)^{\frac{5}{2}}}{10}-\frac{5(2 x+5)^{\frac{3}{2}}}{6}+c
$$

Your turn

Find:

$$
\int \cos x \sin x(2+\sin x)^{4} d x
$$

using the substitution $u=\sin x+2$

Find:

$$
\int \cos x \sin x(1+\sin x)^{3} d x
$$

using the substitution $u=\sin x+1$

$$
\frac{1}{5}(\sin x+1)^{5}-\frac{1}{4}(\sin x+1)^{4}+c
$$

Find:

$$
\int_{0}^{\frac{\pi}{2}} \cos x \sin x(2+\sin x)^{4} d x
$$

using the substitution $u=\sin x+2$

Find:

$$
\int_{0}^{\frac{\pi}{2}} \cos x \sin x(1+\sin x)^{3} d x
$$

using the substitution $u=\sin x+1$

$$
\frac{49}{20}
$$

Your turn

Find:

$$
\int \frac{3 \sin 2 x}{2+\sin x} d x
$$

using the substitution $u=2+\sin x$

Find:

$$
\int \frac{2 \sin 2 x}{1+\cos x} d x
$$

using the substitution $u=1+\cos x$

$$
4 \ln |1+\cos x|-4 \cos x+c
$$

Calculate:

$$
\int_{0}^{\frac{\pi}{2}} \sin x \sqrt{2+\cos x} d x
$$

using the substitution $u=\cos x+2$

Calculate:

$$
\int_{0}^{\frac{\pi}{2}} \cos x \sqrt{1+\sin x} d x
$$

using the substitution $u=\sin x+1$

$$
\frac{2}{3}(2 \sqrt{2}-1)
$$

Use the substitution $u=\sqrt{x}-1$ to evaluate:

$$
\int_{36}^{49} \frac{1}{\sqrt{x}-1} d x
$$

Use the substitution $u=1+\sqrt{x}$ to evaluate:

$$
\begin{gathered}
\int_{16}^{25} \frac{1}{1+\sqrt{x}} d x \\
2+2 \ln \left|\frac{5}{6}\right|
\end{gathered}
$$

Your turn

A finite region is bounded by the curve with equation $y=x^{3} \ln \left(x^{2}+3\right)$, the x-axis and the lines $x=0$ and $x=\sqrt{5}$.

Use the substitution $u=x^{2}+3$ to show that the area of R is $\frac{1}{2} \int_{3}^{8}(u-3) \ln u d u$

A finite region is bounded by the curve with equation $y=x^{3} \ln \left(x^{2}+2\right)$, the x-axis and the lines $x=0$ and $x=\sqrt{2}$.

Use the substitution $u=x^{2}+2$ to show that the area of R is $\frac{1}{2} \int_{2}^{4}(u-2) \ln u d u$

Shown

Worked example

Your turn

Using integration by substitution, prove that:

$$
-\int \frac{1}{\sqrt{1-x^{2}}} d x=\arccos x+c
$$

Using integration by substitution, prove that:

$$
\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x+c
$$

Worked example

Your turn

Use the substitution $u=\cos x$ to evaluate

$$
\int_{0}^{\frac{\pi}{3}} \sin ^{3} x \cos ^{2} x d x
$$

Use the substitution $u=\sin x$ to evaluate

$$
\int_{0}^{\frac{\pi}{6}} \sin ^{2} x \cos ^{3} x d x
$$

$$
\frac{17}{480}
$$

Your turn

Use the substitution $x=\cos u$ to evaluate

$$
\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} x^{2} \sqrt{1-x^{2}} d x
$$

Use the substitution $x=\sin u$ to evaluate

$$
\begin{aligned}
& \int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} x^{2} \sqrt{1-x^{2}} d x \\
& \frac{2 \pi+3 \sqrt{3}}{96}
\end{aligned}
$$

Your turn

Find:
Find:

$$
\int x \sin x d x
$$

$$
\begin{gathered}
\int x \cos x d x \\
x \sin x+\cos x+c
\end{gathered}
$$

Find:

$$
\int x^{2} \sin x d x
$$

$$
2 x \sin x-x^{2} \cos x+2 \cos x+c
$$

Find:

$$
\int x^{2} e^{-x} d x
$$

Find:

$$
\begin{gathered}
\int x^{2} e^{x} d x \\
x^{2} e^{x}-2 x e^{x}+2 e^{x}+c
\end{gathered}
$$

Your turn

Find:
Find:

$$
\begin{gathered}
\int x^{2} \ln x d x \\
\frac{1}{3} x^{3} \ln x-\frac{1}{9} x^{3}+c
\end{gathered}
$$

Your turn

Evaluate: Evaluate:

$$
\int_{1}^{4} \ln x d x
$$

Find:

$$
\int e^{x} \cos x d x
$$

Find:

$$
\begin{gathered}
\int e^{x} \sin x d x \\
-\frac{1}{2} e^{x} \cos x+\frac{1}{2} e^{x} \sin x+c
\end{gathered}
$$

Your turn

Evaluate:

$$
\int_{0}^{\frac{\pi}{2}} x \cos x d x
$$

$$
\int_{0}^{\frac{\pi}{2}} x \sin x d x
$$

1

$$
\int \frac{x+5}{(x-1)(x+2)} d x
$$

Find:

$$
\begin{gathered}
\int \frac{x-5}{(x+1)(x-2)} d x \\
\ln \left|\frac{(x+1)^{2}}{x-2}\right|+c
\end{gathered}
$$

Find:

$$
\int \frac{3 x+15-4 x^{2}}{(2 x+1)(x-2)^{2}} d x
$$

Find:

$$
\begin{gathered}
\int \frac{8 x^{2}-19 x+1}{(2 x+1)(x-2)^{2}} d x \\
\ln \left|(2 x+1)(x-2)^{3}\right|+\frac{1}{x-2}+c
\end{gathered}
$$

Evaluate:

$$
\int_{0}^{2} \frac{8 x^{2}+34 x+20}{(2 x+1)(x+1)(x+3)}
$$

Evaluate:

$$
\begin{gathered}
\int_{0}^{2} \frac{4-2 x}{(2 x+1)(x+1)(x+3)} \\
\ln \left(\frac{125}{81}\right)
\end{gathered}
$$

Your turn

Find:

$$
\int \frac{4}{x^{2}-4} d x
$$

Find:

$$
\begin{gathered}
\int \frac{2}{x^{2}-1} d x \\
\ln \left|\frac{x-1}{x+1}\right|+c
\end{gathered}
$$

Find:

$$
\int \frac{x^{2}}{x-1} d x
$$

Find:

$$
\begin{gathered}
\int \frac{x^{2}}{x+1} d x \\
\frac{1}{2} x^{2}-x+\ln |x+1|+c
\end{gathered}
$$

Find:

$$
\int \frac{x}{x-2} d x
$$

$$
\int \frac{x-2}{x} d x
$$

$$
\begin{gathered}
\int \frac{x}{x-1} d x \\
x+\ln |x-1|+c \\
\int \frac{x-1}{x} d x \\
x-\ln |x|+c
\end{gathered}
$$

Find:

$$
\int \frac{x^{3}-2}{x-1} d x
$$

Find:

$$
\begin{gathered}
\int \frac{x^{3}+2}{x+1} d x \\
\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+x+\ln |x+1|+c
\end{gathered}
$$

Find:

$$
\int \frac{4 x^{2}-2 x-18}{4 x^{2}-9} d x
$$

Find:

$$
\begin{gathered}
\int \frac{9 x^{2}-3 x+2}{9 x^{2}-4} d x \\
x+\frac{1}{3} \ln \left|\frac{3 x-2}{(3 x+2)^{2}}\right|+c
\end{gathered}
$$

11.8) Finding areas

Your turn

A finite region is bound by the curve $y=\frac{3}{\sqrt{9+4 x}}$, the x-axis, and the lines $x=0$ and $x=4$. Use integration to find the area of the region.

A finite region is bound by the curve
$y=\frac{9}{\sqrt{4+3 x}}$, the x-axis, and the lines $x=0$ and $x=4$. Use integration to find the area of the region.

12

Your turn

A finite region is bound between the curves $y=\sin 2 x$ and $y=\cos x \sin ^{2} x$ where $0 \leq x \leq \frac{\pi}{2}$. Use integration to find the area of the region.

A finite region is bound between the curves $y=\sin 2 x$ and $y=\sin x \cos ^{2} x$ where $0 \leq x \leq \frac{\pi}{2}$. Use integration to find the area of the region.
$\frac{2}{3}$

11.8+) Finding areas: Areas under parametric curves Chapter CONTENTS

Your turn

Determine the area bound between the curve with parametric equations $x=t^{2}$ and $y=t-1$, the x-axis, and the lines $x=0$ and $x=5$.

Determine the area bound between the curve with parametric equations
$x=t^{2}$ and $y=t+1$, the x-axis, and the lines $x=0$ and $x=3$.

$$
2 \sqrt{3}+3
$$

Your turn

The curve C has parametric equations

$$
x=t(2+t), \quad y=\frac{1}{2+t}, \quad t \geq 0
$$

Find the exact area of the region, bounded by C, the x-axis and the lines $x=0$ and $x=8$.

The curve C has parametric equations

$$
x=t(1+t), \quad y=\frac{1}{1+t}, \quad t \geq 0
$$

Find the exact area of the region, bounded by C, the x-axis and the lines $x=0$ and $x=2$.

$$
2-\ln 2
$$

Your turn

The curve C has parametric equations $x=1-\frac{1}{4} t, \quad y=4^{t}-1, \quad t \geq 0$
A finite region is bounded by the curve C, the x-axis and the line $x=-1$. Find the exact area of this region.

The curve C has parametric equations

$$
x=1-\frac{1}{2} t, \quad y=2^{t}-1, \quad t \geq 0
$$

A finite region is bounded by the curve C, the x-axis and the line $x=-1$. Find the exact area of this region.

$$
\frac{15}{2 \ln 2}-2
$$

Your turn

Using the trapezium rule, approximate the region bounded between $x=1, x=$ 3 , the x-axis and the curve $y=x^{2}$, using 8 strips.

Using the trapezium rule, approximate the region bounded between $x=1, x=$ 3 , the x-axis and the curve $y=x^{2}$, using 4 strips.

Your turn

$$
I=\int_{0}^{\frac{\pi}{3}} \sec x d x
$$

Use the trapezium rule with two strips to estimate I.

$$
I=\int_{0}^{\frac{\pi}{3}} \sec x d x
$$

Use the trapezium rule with four strips to estimate I.

$$
1.34 \text { (2 dp) }
$$

Worked example

Your turn

$$
I=\int_{0}^{\frac{\pi}{2}} \sin x d x
$$

a) Use the trapezium rule with four strips to estimate I
b) State, with a reason, whether your approximation is an underestimate or an overestimate
c) Find the percentage error of your estimate to the exact value of I
d) Give one way the trapezium rule can be used to give a more accurate approximation

$$
I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x d x
$$

a) Use the trapezium rule with four strips to estimate I
b) State, with a reason, whether your approximation is an underestimate or an overestimate
c) Find the percentage error of your estimate to the exact value of I
d) Give one way the trapezium rule can be used to give a more accurate approximation
a) 1.896 (3 dp)
b) Underestimate. The graph of $y=\cos x$ is convex in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
c) $5.19 \% ~(3 \mathrm{sf})$
d) Increase number of trapezia, decrease h, increase n etc.

Find the general solution to:

$$
\frac{d y}{d x}=x y-y
$$

Find the general solution to:

$$
\begin{aligned}
& \frac{d y}{d x}=x y+y \\
& y=A e^{\frac{1}{2} x^{2}+x}
\end{aligned}
$$

Find the general solution to:

$$
\left(1-x^{2}\right) \frac{d y}{d x}=x \cot y
$$

Find the general solution to:

$$
\begin{gathered}
\left(1+x^{2}\right) \frac{d y}{d x}=x \tan y \\
y=\arcsin \left(k \sqrt{1+x^{2}}\right)
\end{gathered}
$$

Find the particular solution to:

$$
\frac{d y}{d x}=-\frac{3(y+2)}{(2 x-1)(x-2)}
$$

given that $x=4$ when $y=5$

Find the particular solution to:

$$
\frac{d y}{d x}=-\frac{3(y-2)}{(2 x+1)(x+2)}
$$

given that $x=1$ when $y=4$

$$
y=3+\frac{3}{2 x+1}
$$

Find the particular solution to:

$$
\frac{d y}{d x}=-\frac{5}{y \sin ^{2} x}
$$

given that $y=4$ at $x=\frac{\pi}{4}$

Find the particular solution to:

$$
\frac{d y}{d x}=-\frac{3}{y \cos ^{2} x}
$$

given that $y=2$ at $x=\frac{\pi}{4}$

$$
y^{2}=-6 \tan x+10
$$

Your turn

Find the particular solution to:

$$
\begin{array}{r}
\frac{d y}{d x}=x y \cos x \\
\text { given that } y=1 \text { at } x=\frac{\pi}{2}
\end{array}
$$

Find the particular solution to:
$\frac{d y}{d x}=x y \sin x$
given that $y=1$ at $x=\frac{\pi}{2}$

$$
\ln |y|=\sin x-x \cos x-1
$$

11.11) Modelling with differential equations Chapter CONTENTS

The rate of increase of a human population (with population H, where time is t) is proportional to the current population. Form a differential equation, and find its general solution.

The rate of increase of a rabbit population (with population P, where time is t) is proportional to the current population. Form a differential equation, and find its general solution.

$$
P=A e^{k t}
$$

Your turn

The rate of increase of a population P of microorganisms at time t, in hours, is given by

$$
\frac{d P}{d t}=6 P, k>0
$$

Initially the population was of size 4.
a) Find a model for P in the form $P=A e^{6 t}$
b) Find, to the nearest hundred, the size of the population at time $t=4$
c) Find the time at which the population will be 10000 times its starting value.
d) State one limitation of this model for large values of t

The rate of increase of a population P of microorganisms at time t, in hours, is given by

$$
\frac{d P}{d t}=3 P, k>0
$$

Initially the population was of size 8 .
a) Find a model for P in the form $P=A e^{3 t}$
b) Find, to the nearest hundred, the size of the population at time $t=2$
c) Find the time at which the population will be 1000 times its starting value.
d) State one limitation of this model for large values of t
a) $P=8 e^{3 t}$
b) 3200
c) 2.3 hours $=2$ hours 18 minutes
d) The population could not increase in this way forever due to limitations such as available food or space

Worked example

Your turn

Water in a manufacturing plant is held in a large cylindrical tank of diameter 10m. Water flows out of the bottom of the tank through a tap at a rate proportional to the cube root of the volume.
(a) Show that t minutes after the tap is opened, $\frac{d h}{d t}=-k \sqrt[3]{h}$ for some constant k.
(b) Show that the general solution of this differential
equation may be written $h=(P-Q t)^{\frac{3}{2}}$, where P and Q are constants.
Initially the height of the water is 64 m .21 minutes later, the height is 27 m .
(c) Find the values of the constants P and Q.
(d) Find the time in minutes when the water is at a depth of 8 m .

Water in a manufacturing plant is held in a large cylindrical tank of diameter 20m. Water flows out of the bottom of the tank through a tap at a rate proportional to the cube root of the volume.
(a) Show that t minutes after the tap is opened, $\frac{d h}{d t}=-k \sqrt[3]{h}$ for some constant k.
(b) Show that the general solution of this differential equation may be written $h=(P-Q t)^{\frac{3}{2}}$, where P and Q are constants.
Initially the height of the water is 27 m .10 minutes later, the height is 8 m .
(c) Find the values of the constants P and Q.
(d) Find the time in minutes when the water is at a depth of 1 m .
a) Shown: $k=\frac{k \sqrt[3]{100 \pi h}}{100 \pi}$
b) Shown
c) $P=9, Q=\frac{1}{2}$
d) 16 minutes

Worked example

Your turn

Liquid is pouring into a container at a constant rate of $40 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ and is leaking out at a rate proportional to the volume of liquid already in the container.
The volume, $V \mathrm{~cm}^{3}$, of liquid in the container at time t seconds is satisfied by the differential equation

$$
\frac{d V}{d t}=40-k V
$$

The container is initially empty.
a) By solving the differential equation show that

$$
V=A+B e^{-k t}
$$

giving the values of A and B in terms of k
b) Given also that $\frac{d V}{d t}=20$ at $t=10$, find the volume of liquid in the container 20 seconds after the start.

Liquid is pouring into a container at a constant rate of $20 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ and is leaking out at a rate proportional to the volume of liquid already in the container.
The volume, $V \mathrm{~cm}^{3}$, of liquid in the container at time t seconds is satisfied by the differential equation

$$
\frac{d V}{d t}=20-k V
$$

The container is initially empty.
a) By solving the differential equation show that

$$
V=A+B e^{-k t}
$$

giving the values of A and B in terms of k
b) Given also that $\frac{d V}{d t}=10$ at $t=5$, find the volume of liquid in the container 10 seconds after the start.
a) $V=\frac{20}{k}-\frac{20}{k} e^{-k t}$
b) $V=\frac{75}{\ln 2}=108 \mathrm{~cm}^{3}(3 \mathrm{sf})$

Worked example

Your turn

A fluid reservoir initially containers 10000 litres of unpolluted fluid.
The reservoir is leaking at a constant rate of 200 litres per hour and it is suspected that contaminated fluid flows into the reservoir at a constant rate of 300 litres per day. The contaminated fluid contains 4 grams of contaminant in every litre of fluid.
It is assumed that the contaminant instantly disperses throughout the reservoir upon entry. Given that there are x grams of contaminant in the reservoir after t days,
(a) Show that the situation can be modelled by the differential equation

$$
\frac{d x}{d t}=1200-\frac{2 x}{100+t}
$$

(b) Hence find the number of grams of contaminant in the tank after 7 days.
(c) Explain how the model could be refined.

A storage tank initially containers 1000 litres of pure water.
Liquid is removed from the tank at a constant rate of 30 litres per hour and a chemical solution is added to the tank at a constant rate of 40 litres per hour.
The chemical solution contains 4 grams of copper sulphate per litre of water.
It is assumed that the copper suphate instantly disperses throughout the tank on entry.
Given that there are x grams of copper sulphate in the tank after t hours,
(a) Show that the situation can be modelled by the differential equation

$$
\frac{d x}{d t}=160-\frac{3 x}{100+t}
$$

(b) Hence find the number of grams of copper sulphate in the tank after 6 hours.
(c) Explain how the model could be refined.
(a) Shown
(b) $882 \mathrm{~g}(3 \mathrm{sf})$
(c) The model could be refined to take into account the fact that the cupper sulphate does not disperse immediately on entering the tank.

Your turn

The diagram shows a sketch of the curve with equation $y=\sqrt[4]{x}, x>0$.

The area under the curve may be thought of as a series of thin strips of height y and width δx.
Calculate to 4 significant figures:

$$
\lim _{\delta x \rightarrow 0} \sum_{2}^{3} \sqrt[4]{x} \delta x
$$

The diagram shows a sketch of the curve with equation $y=\sqrt[5]{x}, x>0$.

The area under the curve may be thought of as a series of thin strips of height y and width δx.
Calculate to 4 significant figures:

$$
\lim _{\delta x \rightarrow 0} \sum_{3}^{4} \sqrt[5]{x} \delta x
$$

1.284

Your turn

Calculate to four significant figures:
$\lim _{\delta x \rightarrow 0} \sum_{5}^{6} \cos x \delta x$
Calculate to four significant figures:

$$
\lim _{\delta x \rightarrow 0} \sum_{1}^{2} \sin x \delta x
$$

0.9564

