Worked example

Your turn

A light scale-pan is attached to a vertical light inextensible string.
The scale-pan carries two masses A and B.
The mass of A is 300 g and the mass of B is 200 g . A rests on top of B.
The scale-pan is raised vertically, using the string, with acceleration $0.25 \mathrm{~ms}^{-2}$.
(a) Find the tension in the string.
(b) Find the force exerted on mass B by mass A.
(c) Find the force exerted on mass B by the scalepan.

A light scale-pan is attached to a vertical light inextensible string.
The scale-pan carries two masses A and B.
The mass of A is 400g and the mass of B is 600 g . A rests on top of B.
The scale-pan is raised vertically, using the string, with acceleration $0.5 \mathrm{~ms}^{-2}$.
(a) Find the tension in the string.
(b) Find the force exerted on mass B by mass A.
(c) Find the force exerted on mass B by the scalepan.
a) $10 \mathrm{~N}(2 \mathrm{sf})$
b) $4.1 \mathrm{~N}(2 \mathrm{sf})$
c) $10 \mathrm{~N}(2 \mathrm{sf})$

Your turn

A person travels in a lift. The mass of the person is 40 kg and the mass of the lift is 860 kg . The lift is being raised vertically by a vertical cable which is attached to the top of the lift. The lift is moving upwards and has constant deceleration $4 \mathrm{~ms}^{-2}$. By modelling the cable as being light and inextensible, find:
a) The tension in the cable
b) The magnitude of the force exerted on the woman by the floor of the lift

A person travels in a lift. The mass of the person is 50 kg and the mass of the lift is 950 kg .
The lift is being raised vertically by a vertical cable which is attached to the top of the lift. The lift is moving upwards and has constant deceleration
$2 \mathrm{~ms}^{-2}$. By modelling the cable as being light and inextensible, find:
a) The tension in the cable
b) The magnitude of the force exerted on the woman by the floor of the lift
a) 7800 N
b) 390 N

