Worked example	Your turn
 A light scale-pan is attached to a vertical light inextensible string. The scale-pan carries two masses A and B. The mass of A is 300g and the mass of B is 200g. A rests on top of B. The scale-pan is raised vertically, using the string, with acceleration 0.25 ms⁻². (a) Find the tension in the string. (b) Find the force exerted on mass B by mass A. (c) Find the force exerted on mass B by the scale-pan. 	 A light scale-pan is attached to a vertical light inextensible string. The scale-pan carries two masses A and B. The mass of A is 400g and the mass of B is 600g. A rests on top of B. The scale-pan is raised vertically, using the string, with acceleration 0.5 ms⁻². (a) Find the tension in the string. (b) Find the force exerted on mass B by mass A. (c) Find the force exerted on mass B by the scale-pan. a) 10 N (2 sf) b) 4.1 N (2 sf) c) 10 N (2 sf)

Worked example	Your turn
 A person travels in a lift. The mass of the person is 40 kg and the mass of the lift is 860 kg. The lift is being raised vertically by a vertical cable which is attached to the top of the lift. The lift is moving upwards and has constant deceleration 4 ms⁻². By modelling the cable as being light and inextensible, find: a) The tension in the cable b) The magnitude of the force exerted on the woman by the floor of the lift 	 A person travels in a lift. The mass of the person is 50 kg and the mass of the lift is 950 kg. The lift is being raised vertically by a vertical cable which is attached to the top of the lift. The lift is moving upwards and has constant deceleration 2 ms⁻². By modelling the cable as being light and inextensible, find: a) The tension in the cable b) The magnitude of the force exerted on the woman by the floor of the lift
	a) 7800 <i>N</i> b) 390 <i>N</i>