10.5) Connected particles

Worked example

Your turn

Two particles, P and Q, of masses 6 kg and 4 kg respectively, are connected by a light inextensible string. Particle Q is pulled by a horizontal force of magnitude 20 N along a rough horizontal plane. Particle Q experiences a frictional force of 5 N and particle P experiences a frictional force of 3 N .
(a) Find the acceleration of the particles.
(b) Find the tension in the string.
(c) Explain how the modelling assumptions that the string is light and inextensible have been used.

Two particles, P and Q, of masses 5 kg and 3 kg respectively, are connected by a light inextensible string. Particle P is pulled by a horizontal force of magnitude 40 N along a rough horizontal plane. Particle P experiences a frictional force of 10 N and particle Q experiences a frictional force of 6 N .
(a) Find the acceleration of the particles.
(b) Find the tension in the string.
a) $a=3 \mathrm{~ms}^{-2}$
b) $T=15 \mathrm{~N}$

Worked example

Your turn

A car of mass 1200 kg pulls a trailer of mass 400 kg along a straight horizontal road using a light tow-bar which is parallel to the road. The horizontal resistances to motion of the car and the trailer have magnitudes 400 N and $200 N$ respectively. The engine of the car produces a constant horizontal driving force on the car of magnitude 2000 N .
a) Find the acceleration of the car and trailer
b) Find the magnitude of the tension in the tow-bar The engine cuts out, reducing the force produced by the engine to zero and the brakes are applied. The brakes produce a force on the car of magnitude F Newtons and the car and trailer decelerate.
Given that the resistances to motion are unchanged, and the magnitude of the thrust in the towbar is 300 N , find the value of F

A car of mass 600 kg pulls a trailer of mass 200 kg along a straight horizontal road using a light tow-bar which is parallel to the road. The horizontal resistances to motion of the car and the trailer have magnitudes 300 N and 100 N respectively. The engine of the car produces a constant horizontal driving force on the car of magnitude 1600 N .
a) Find the acceleration of the car and trailer
b) Find the magnitude of the tension in the tow-bar The engine cuts out, reducing the force produced by the engine to zero and the brakes are applied. The brakes produce a force on the car of magnitude F Newtons and the car and trailer decelerate.
Given that the resistances to motion are unchanged, and the magnitude of the thrust in the towbar is 200 N , find the value of F
a) $a=1.5 \mathrm{~ms}^{-2}$
b) 400 N
c) 800 N

