10.4) Motion in 2 dimensions

Worked example	Your turn
 Let <i>i</i> represent East and <i>j</i> North. A resultant force of (2<i>i</i> + 7<i>j</i>) <i>N</i> acts upon a particle of mass 0.25 kg. (a) Find the acceleration of the particle in the form (<i>pi</i> + <i>qj</i>) ms⁻². (b) Find the magnitude and bearing of the acceleration of the particle. 	 Let <i>i</i> represent East and <i>j</i> North. A resultant force of (3<i>i</i> + 8<i>j</i>) <i>N</i> acts upon a particle of mass 0.5 kg. (a) Find the acceleration of the particle in the form (<i>pi</i> + <i>qj</i>) <i>ms</i>⁻². (b) Find the magnitude and bearing of the acceleration of the particle. a) (6<i>i</i> + 16<i>j</i>) <i>ms</i>⁻² b) Magnitude = 17.1 <i>ms</i>⁻² (3 sf) Bearing = 020.6° (1 dp)

Worked example	Your turn
A boat is modelled as a particle of mass 30 kg being acted on by three forces. $F_1 = \binom{25}{40}N,$ $F_2 = \binom{5q}{10q}N,$ $F_3 = \binom{50}{-37.5}N$ Given that the boat is accelerating at a rate of $\binom{-0.75}{0.4}$ ms ⁻² , find the values of p and q .	A boat is modelled as a particle of mass 60 kg being acted on by three forces. $F_1 = \begin{pmatrix} 80 \\ 50 \end{pmatrix} N,$ $F_2 = \begin{pmatrix} 10q \\ 20q \end{pmatrix} N,$ $F_3 = \begin{pmatrix} -75 \\ 100 \end{pmatrix} N$ Given that the boat is accelerating at a rate of $\begin{pmatrix} 0.8 \\ -1.5 \end{pmatrix}$ ms ⁻² , find the values of p and q . p = 4.3, q = -12

Worked example	Your turn
A particle of mass 5 kg start from rest and is acted upon by a force R of $(4\mathbf{i} + k\mathbf{j}) N$. R acts on a bearing of 45°. Find the value of k	A particle of mass $4 kg$ start from rest and is acted upon by a force R of $(5i + kj) N$. R acts on a bearing of 135°. Find the value of k
	k = -5

Worked example	Your turn
Two forces, $\binom{5}{2}$ N and $\binom{p}{q}$ N act on a particle of mass m kg. The resultant of the two forces is R .	Two forces, $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ N and $\begin{pmatrix} p \\ q \end{pmatrix}$ N act on a particle of mass m kg. The resultant of the two forces is R .
to the vector $\binom{-1}{2}$, show that $2p + q + 12 = 0$	to the vector $\binom{-2}{1}$, show that $2q + p + 11 = 0$
b) Given also that $p = 1$ and that P moves with an acceleration of magnitude $10\sqrt{5} m s^{-2}$, find the value of m	 b) Given also that p = 5 and that P moves with an acceleration of magnitude 40√5 ms⁻², find the value of m a) Shown b) m = 0.1 kg