Worked example

Your turn

Let \boldsymbol{i} represent East and \boldsymbol{j} North. A resultant force of $(2 \boldsymbol{i}+7 \boldsymbol{j}) N$ acts upon a particle of mass 0.25 kg .
(a) Find the acceleration of the particle in the form $(p \boldsymbol{i}+q \boldsymbol{j}) \mathrm{ms}^{-2}$.
(b) Find the magnitude and bearing of the acceleration of the particle.

Let \boldsymbol{i} represent East and \boldsymbol{j} North. A resultant force of $(3 \boldsymbol{i}+8 \boldsymbol{j}) \mathrm{N}$ acts upon a particle of mass 0.5 kg .
(a) Find the acceleration of the particle in the form $(p \boldsymbol{i}+q \boldsymbol{j}) m s^{-2}$.
(b) Find the magnitude and bearing of the acceleration of the particle.
a) $(6 \boldsymbol{i}+16 \boldsymbol{j}) m s^{-2}$
b) Magnitude $=17.1 \mathrm{~ms}^{-2}(3 \mathrm{sf})$ Bearing $=020.6^{\circ}(1 \mathrm{dp})$

Your turn

A boat is modelled as a particle of mass 30 kg being acted on by three forces.

$$
\begin{aligned}
F_{1} & =\binom{25}{40} N, \\
F_{2} & =\binom{5 q}{10 q} N, \\
F_{3} & =\binom{50}{-37.5} N
\end{aligned}
$$

Given that the boat is accelerating at a rate of $\binom{-0.75}{0.4} \mathrm{~ms}^{-2}$, find the values of p and q.

A boat is modelled as a particle of mass 60 kg being acted on by three forces.

$$
\begin{aligned}
F_{1} & =\binom{80}{50} N, \\
F_{2} & =\binom{10 q}{20 q} N, \\
F_{3} & =\binom{-75}{100} N
\end{aligned}
$$

Given that the boat is accelerating at a rate of $\binom{0.8}{-1.5} \mathrm{~ms}^{-2}$, find the values of p and q.

$$
p=4.3, q=-12
$$

Your turn

A particle of mass 5 kg start from rest and is acted upon by a force R of $(4 \boldsymbol{i}+k \boldsymbol{j}) N$. R acts on a bearing of 45°. Find the value of k

A particle of mass 4 kg start from rest and is acted upon by a force R of $(5 \boldsymbol{i}+k \boldsymbol{j}) N$. R acts on a bearing of 135°. Find the value of k

$$
k=-5
$$

Your turn

Two forces, $\binom{5}{2} N$ and $\binom{p}{q} N$ act on a particle of mass $m \mathrm{~kg}$. The resultant of the two forces is R.
a) Given that R acts in a direction which is parallel to the vector $\binom{-1}{2}$, show that $2 p+q+12=$ 0
b) Given also that $p=1$ and that P moves with an acceleration of magnitude $10 \sqrt{5} \mathrm{~ms}^{-2}$, find the value of m

Two forces, $\binom{3}{4} N$ and $\binom{p}{q} N$ act on a particle of mass $m \mathrm{~kg}$. The resultant of the two forces is R.
a) Given that R acts in a direction which is parallel to the vector $\binom{-2}{1}$, show that $2 q+p+11=$ 0
b) Given also that $p=5$ and that P moves with an acceleration of magnitude $40 \sqrt{5} \mathrm{~ms}^{-2}$, find the value of m
a) Shown
b) $m=0.1 \mathrm{~kg}$

