10.4) Applications to modelling

Worked example	Your turn
The price of a car in £s, x years after purchase, is modelled by the function $f(x) = 5000 (0.58)^x - 100 \sin x$, $x > 0$ (a) Use the model to find the value, to the nearest hundred £s, of the car 5 years after purchase.	The price of a car in £s, x years after purchase, is modelled by the function $g(x) = 15000 (0.85)^x - 1000 \sin x$, $x > 0$ (a) Use the model to find the value, to the nearest hundred £s, of the car 10 years after purchase. (a) £3500

Worked example	Your turn
The price of a car in £s, x years after purchase, is modelled by the function $f(x) = 5000 (0.58)^x - 100 \sin x$, $x > 0$ (a) Use the model to find the value, to the nearest hundred £s, of the car 5 years after purchase. (b) Show that $f(x)$ has a root between 7 and 8.	The price of a car in £s, x years after purchase, is modelled by the function $g(x) = 15000 (0.85)^x - 1000 \sin x$, $x > 0$ (a) Use the model to find the value, to the nearest hundred £s, of the car 10 years after purchase. (b) Show that $g(x)$ has a root between 19 and 20. (b) g(19) = 543.11 > 0 g(20) = -331.55 < 0 Change of sign and $g(x)$ continuous in the interval [19, 20] \therefore root in the interval [19, 20]

Worked example	Your turn
The price of a car in £s, x years after purchase, is modelled by the function $f(x) = 5000 (0.58)^x - 100 \sin x$, $x > 0$	The price of a car in £s, x years after purchase, is modelled by the function $g(x) = 15000 (0.85)^{x} - 1000 \sin x$, $x > 0$
(a) Use the model to find the value, to the nearest hundred £s, of the car 5 years after purchase.	(a) Use the model to find the value, to the hearest hundred £s, of the car 10 years after purchase.
 (b) Show that f(x) has a root between 7 and 8. (c) Taking 7.5 as a first approximation, apply the Newton-Raphson method once to f(x) to obtain a second approximation for the time when the value of the car is zero. Give your answer to 3 decimal places. 	 (b) Show that g(x) has a root between 19 and 20. (c) Taking 19.5 as a first approximation, apply the Newton-Raphson method once to g(x) to obtain a second approximation for the time when the value of the car is zero. Give your answer to 3 decimal places. (c) g'(x) = (15 000)(0.85)^x (ln 0.85) - 1000 cos x
	$g(19.5) = 15000(0.85)^{19.5} - 1000 \sin(19.5)$ = 25.0693 $g'(19.5) = 15000(0.85)^{19.5} (\ln 0.85) - 1000 \cos(19.5)$ = -893.3009
	$x_1 = 19.5 - \frac{g(19.5)}{g'(19.5)} = 19.528 (3 \text{ dp})$

Worked example	Your turn
The price of a car in £s, <i>x</i> years after purchase, is modelled by the function	The price of a car in \pounds s, x years after purchase, is modelled by the function
(a) Use the model to find the value, to the nearest hundred fs, of the car 5 years after purchase.	$g(x) = 15000 (0.85)^x - 1000 \sin x$, $x > 0$ (a) Use the model to find the value, to the nearest hundred £s, of the car 10 years after purchase.
(b) Show that $f(x)$ has a root between 7 and 8.	(b) Show that $g(x)$ has a root between 19 and 20.
(c) Taking 7.5 as a first approximation, apply the Newton- Raphson method once to $f(x)$ to obtain a second approximation for the time when the value of the car is zero. Give your answer to 3 decimal places.	(c) Taking 19.5 as a first approximation, apply the Newton-Raphson method once to $g(x)$ to obtain a second approximation for the time when the value of the car is zero. Give your answer to 3 decimal places.
(d) Criticise this model with respect to the value of the car as it gets older.	(d) Criticise this model with respect to the value of the car as it gets older.
	(d) In reality, the car can never have a negative value so this model is not reasonable for cars that are approximately 20 or more years old.