10.4) Applications to modelling

Your turn

The price of a car in $£ s, x$ years after purchase, is modelled by the function

$$
f(x)=5000(0.58)^{x}-100 \sin x, \quad x>0
$$

(a) Use the model to find the value, to the nearest hundred $£ s$, of the car 5 years after purchase.

The price of a car in $£ s, x$ years after purchase, is modelled by the function

$$
g(x)=15000(0.85)^{x}-1000 \sin x, \quad x>0
$$

(a) Use the model to find the value, to the nearest hundred $£ s$, of the car 10 years after purchase.
(a) $£ 3500$

Worked example

Your turn

The price of a car in $£ s, x$ years after purchase, is modelled by the function

$$
f(x)=5000(0.58)^{x}-100 \sin x, \quad x>0
$$

(a) Use the model to find the value, to the nearest hundred $£ s$, of the car 5 years after purchase.
(b) Show that $f(x)$ has a root between 7 and 8 .

The price of a car in $£ \mathrm{f}, x$ years after purchase, is modelled by the function

$$
g(x)=15000(0.85)^{x}-1000 \sin x, \quad x>0
$$

(a) Use the model to find the value, to the nearest hundred $£ s$, of the car 10 years after purchase.
(b) Show that $g(x)$ has a root between 19 and 20.
(b)
$g(19)=543.11 \ldots>0$
$g(20)=-331.55 \ldots<0$
Change of sign and $g(x)$ continuous in the interval [19, 20]
\therefore root in the interval $[19,20]$

Worked example

Your turn

The price of a car in $£ s, x$ years after purchase, is modelled by the function

$$
f(x)=5000(0.58)^{x}-100 \sin x, \quad x>0
$$

(a) Use the model to find the value, to the nearest hundred $£ s$, of the car 5 years after purchase.
(b) Show that $f(x)$ has a root between 7 and 8 .
(c) Taking 7.5 as a first approximation, apply the NewtonRaphson method once to $f(x)$ to obtain a second approximation for the time when the value of the car is zero. Give your answer to 3 decimal places.

The price of a car in $£ s, x$ years after purchase, is modelled by the function

$$
g(x)=15000(0.85)^{x}-1000 \sin x, \quad x>0
$$

(a) Use the model to find the value, to the nearest hundred $£ s$, of the car 10 years after purchase.
(b) Show that $g(x)$ has a root between 19 and 20.
(c) Taking 19.5 as a first approximation, apply the Newton-Raphson method once to $g(x)$ to obtain a second approximation for the time when the value of the car is zero. Give your answer to 3 decimal places.
(c)
$g^{\prime}(x)=(15000)(0.85)^{x}(\ln 0.85)-1000 \cos x$
$g(19.5)=15000(0.85)^{19.5}-1000 \sin (19.5)$ $=25.0693 \ldots$
$g^{\prime}(19.5)=15000(0.85)^{19.5}(\ln 0.85)-1000 \cos (19.5)$

$$
=-893.3009 \ldots
$$

$x_{1}=19.5-\frac{g(19.5)}{g^{\prime}(19.5)}=19.528(3 \mathrm{dp})$

Worked example

Your turn

The price of a car in $£ s, x$ years after purchase, is modelled by the function

$$
f(x)=5000(0.58)^{x}-100 \sin x, \quad x>0
$$

(a) Use the model to find the value, to the nearest hundred $£ s$, of the car 5 years after purchase.
(b) Show that $f(x)$ has a root between 7 and 8.
(c) Taking 7.5 as a first approximation, apply the NewtonRaphson method once to $f(x)$ to obtain a second approximation for the time when the value of the car is zero. Give your answer to 3 decimal places.
(d) Criticise this model with respect to the value of the car as it gets older.

The price of a car in $£ s, x$ years after purchase, is modelled by the function

$$
g(x)=15000(0.85)^{x}-1000 \sin x, \quad x>0
$$

(a) Use the model to find the value, to the nearest hundred $£ s$, of the car 10 years after purchase.
(b) Show that $g(x)$ has a root between 19 and 20.
(c) Taking 19.5 as a first approximation, apply the Newton-Raphson method once to $g(x)$ to obtain a second approximation for the time when the value of the car is zero. Give your answer to 3 decimal places.
(d) Criticise this model with respect to the value of the car as it gets older.
(d) In reality, the car can never have a negative value so
this model is not reasonable for cars that are
approximately 20 or more years old.

