10.3) The Newton-Raphson method

Using the Newton-Raphson process, state the recurrence relation for the following functions:

$$
\begin{aligned}
& f(x)=x^{4}-3 \\
& g(x)=\sec x \\
& h(x)=x^{2}+x+3
\end{aligned}
$$

Using the Newton-Raphson process, state the recurrence relation for the following functions:

$$
\begin{gathered}
\left.f(x)=x^{3}-\right)^{3}-2 \\
x_{n+1}=x_{n}-\frac{\left.x_{n}\right)^{2}}{3\left(x_{n}\right)^{2}} \\
x_{n+1}=x_{n}-\frac{q(x)=\tan x}{\sec ^{2} x_{n}}=x_{n}-\frac{1}{2} \sin \left(2 x_{n}\right) \\
h(x)=x^{2}-x-1 \\
x_{n+1}=x_{n}-\frac{\left(x_{n}\right)^{2}-x_{n}-1}{2 x_{n}-1}
\end{gathered}
$$

Your turn

Using three iterations of the NewtonRaphson process, starting with $x_{0}=0.5$, solve the equation

$$
x=\sin x
$$

Using three iterations of the NewtonRaphson process, starting with $x_{0}=0.5$, solve the equation

$$
x=\cos x
$$

Let $f(x)=x-\cos x$

$$
f^{\prime}(x)=1+\sin x
$$

$$
x_{n+1}=x_{n}-\frac{x_{n}-\cos \left(x_{n}\right)}{1+\sin \left(x_{n}\right)}, x_{0}=0.5
$$

$$
x_{1}=0.5-\frac{0.5-\cos (0.5)}{1+\sin (0.5)}=0.7552224 \ldots
$$

$$
x_{2}=0.7391412
$$

$$
x_{3}=0.7390851
$$

$$
x=0.739(3 \mathrm{dp})
$$

Your turn

$$
f(x)=\frac{1}{3} x^{4}-x^{2}+3 x-1
$$

The equation $f(x)=0$ has a root α in the interval $[-2,-3]$
Taking -2.5 as a first approximation to α, apply the Newton-Raphson process once to $f(x)$ to obtain a second approximation to α. Give your answer to 2 decimal places.

$$
g(x)=\frac{1}{2} x^{4}-x^{3}+x-3
$$

The equation $g(x)=0$ has a root β in the interval $[-2,-1]$
Taking -1.5 as a first approximation to β, apply the Newton-Raphson process once to $g(x)$ to obtain a second approximation to β. Give your answer to 2 decimal places.

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{\frac{1}{2}\left(x_{n}\right)^{4}-\left(x_{n}\right)^{3}+x_{n}-3}{2\left(x_{n}\right)^{3}-3\left(x_{n}\right)^{2}+1} \\
\beta_{1} & =-1.5-\frac{1.40625}{-12.5}=--1.3875 \ldots \\
& =1.39(2 \mathrm{dp})
\end{aligned}
$$

Your turn

$$
f(x)=11 x^{2}-\frac{3}{x^{2}}
$$

The equation $f(x)=0$ has a root α in the interval [0, 1]
Taking 0.4 as a first approximation to α, apply the Newton-Raphson process once to $f(x)$ to obtain a second approximation to α. Give your answer to 3 decimal places.

$$
g(x)=3 x^{2}-\frac{11}{x^{2}}
$$

The equation $g(x)=0$ has a root β in the interval [1, 2]
Taking 1.4 as a first approximation to β, apply the Newton-Raphson process once to $g(x)$ to obtain a second approximation to β. Give your answer to 3 decimal places.

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{3\left(x_{n}\right)^{2}-\frac{11}{\left(x_{n}\right)^{2}}}{6 x_{n}+\frac{22}{\left(x_{n}\right)^{3}}} \\
\beta_{1} & =1.4-\frac{0.2677 \ldots}{16.4174 \ldots}=1.38369 \ldots \\
& =1.384(3 \mathrm{dp})
\end{aligned}
$$

$$
f(x)=x^{2}-5 x+8
$$

State why $x_{0}=2.5$ is not suitable to use as a first approximation to the roots of $f(x)$ when applying the Newton-Raphson method.

State why $x_{0}=-3.5$ is not suitable to use as a first approximation to the roots of $f(x)$ when applying the Newton-Raphson method.
$f^{\prime}(x)=2 x+7=0->x=-3.5$
Turning point at $x=-3.5$
$f^{\prime}(-3.5)=0$
You cannot divide by 0 in the NewtonRaphson method.
Also the tangent to $y=f(x)$ at $x=-3.5$ would be horizontal, and therefore never intersect the x-axis.

