10.3) The Newton-Raphson method

Worked example	Your turn
Using the Newton-Raphson process, state the recurrence relation for the following functions: $f(x) = x^4 - 3$	Using the Newton-Raphson process, state the recurrence relation for the following functions: $f(x) = x_{n+1}^3 - 2$ $x_{n+1} = x_n - \frac{(x_n)^3 - 2}{3(x_n)^2}$
$g(x) = \sec x$	$x_{n+1} = x_n - \frac{g(x) = \tan x}{\sec^2 x_n} = x_n - \frac{1}{2}\sin(2x_n)$
$h(x) = x^2 + x + 3$	$h(x) = x^{2} - x - 1$ $x_{n+1} = x_{n} - \frac{(x_{n})^{2} - x_{n} - 1}{2x_{n} - 1}$

Worked example	Your turn
Using three iterations of the Newton- Raphson process, starting with $x_0 = 0.5$, solve the equation $x = \sin x$	Using three iterations of the Newton- Raphson process, starting with $x_0 = 0.5$, solve the equation $x = \cos x$
	Let $f(x) = x - \cos x$ $f'(x) = 1 + \sin x$ $x_{n+1} = x_n - \frac{x_n - \cos(x_n)}{1 + \sin(x_n)}, x_0 = 0.5$ $x_1 = 0.5 - \frac{0.5 - \cos(0.5)}{1 + \sin(0.5)} = 0.7552224 \dots$ $x_2 = 0.7391412$ $x_3 = 0.7390851$ x = 0.739 (3 dp)

$$f(x) = \frac{1}{3}x^4 - x^2 + 3x - 1$$

The equation f(x) = 0 has a root α in the interval [-2, -3]

Taking -2.5 as a first approximation to α , apply the Newton-Raphson process once to f(x) to obtain a second approximation to α . Give your answer to 2 decimal places. Your turn

$$g(x) = \frac{1}{2}x^4 - x^3 + x - 3$$

The equation g(x) = 0 has a root β in the interval [-2, -1]Taking -1.5 as a first approximation to β , apply the Newton-Raphson process once to g(x) to obtain a second approximation to β . Give your answer to 2 decimal places.

$$x_{n+1} = x_n - \frac{\frac{1}{2}(x_n)^4 - (x_n)^3 + x_n - 3}{2(x_n)^3 - 3(x_n)^2 + 1}$$

$$\beta_1 = -1.5 - \frac{1.40625}{-12.5} = -1.3875 \dots$$

$$= 1.39 (2 \text{ dp})$$

Worked example	Your turn
$f(x) = 11x^2 - \frac{3}{x^2}$	$g(x) = 3x^2 - \frac{11}{x^2}$
The equation $f(x) = 0$ has a root α in the interval [0, 1]	The equation $g(x) = 0$ has a root β in the interval [1, 2]
Taking 0.4 as a first approximation to α , apply the Newton-Raphson process once to $f(x)$ to obtain a second approximation to α . Give your answer to 3 decimal places.	Taking 1.4 as a first approximation to β , apply the Newton-Raphson process once to $g(x)$ to obtain a second approximation to β . Give your answer to 3 decimal places.
	$x_{n+1} = x_n - \frac{3(x_n)^2 - \frac{11}{(x_n)^2}}{6x_n + \frac{22}{(x_n)^3}}$
	$\beta_1 = 1.4 - \frac{0.2677}{16.4174} = 1.38369$ = 1.384 (3 dp)

Worked example	Your turn
$f(x) = x^2 - 5x + 8$ State why $x_0 = 2.5$ is not suitable to use as a first approximation to the roots of $f(x)$ when applying the Newton-Raphson method.	$f(x) = x^2 + 7x + 8$ State why $x_0 = -3.5$ is not suitable to use as a first approximation to the roots of $f(x)$ when applying the Newton-Raphson method.
	$f'(x) = 2x + 7 = 0 \Rightarrow x = -3.5$ Turning point at $x = -3.5$ f'(-3.5) = 0 You cannot divide by 0 in the Newton- Raphson method. Also the tangent to $y = f(x)$ at $x = -3.5$ would be horizontal, and therefore never intersect the <i>x</i> -axis.