## 10.2) Iteration

| Worked example                                                                                                                                       | Your turn                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| $f(x) = x^2 - 5x - 3$<br>a) Show that $f(x) = 0$ can be written as:<br>i) $x = \frac{x^2 - 3}{5}$ ii) $x = \sqrt{5x + 3}$ iii) $x = 5 + \frac{3}{x}$ | $g(x) = x^2 - 6x + 2$<br>a) Show that $g(x) = 0$ can be written as:<br>i) $x = \frac{x^2+2}{6}$ ii) $x = \sqrt{6x-2}$ iii) $x = 6 - \frac{2}{x}$ |
|                                                                                                                                                      | a) Shown                                                                                                                                         |

| Worked example                                                                                                                                                                                                                                                                                         | Your turn                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $f(x) = x^2 - 5x - 3$ a) Show that $f(x) = 0$ can be written as:<br>i) $x = \frac{x^2 - 3}{5}$ ii) $x = \sqrt{5x + 3}$ iii) $x = 5 + \frac{3}{x}$<br>b) Starting with $x_0 = 3$ use each iterative<br>formula to find a root of the equation<br>f(x) = 0, rounding your answers to 3<br>decimal places | $g(x) = x^2 - 6x + 2$ a) Show that $g(x) = 0$ can be written as:<br>i) $x = \frac{x^2 + 2}{6}$ ii) $x = \sqrt{6x - 2}$ iii) $x = 6 - \frac{2}{x}$<br>b) Starting with $x_0 = 4$ use each iterative<br>formula to find a root of the equation<br>g(x) = 0, rounding your answers to 3<br>decimal places |
|                                                                                                                                                                                                                                                                                                        | b) i) $x = 0.354$ (3 dp)                                                                                                                                                                                                                                                                               |

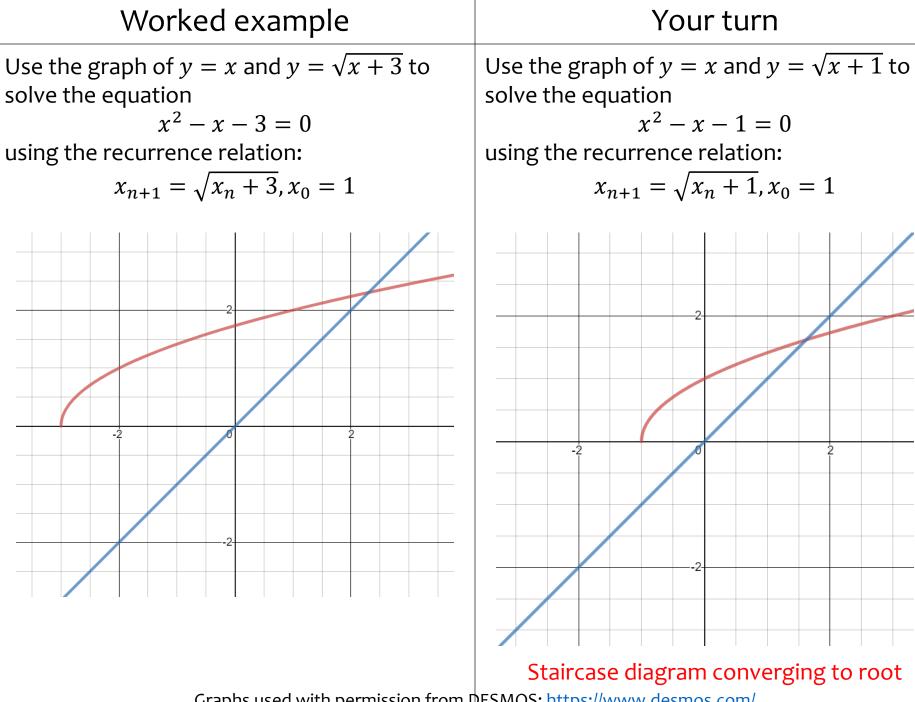
ii) x = 5.646 (3 dp)

iii) x = 5.646 (3 dp)

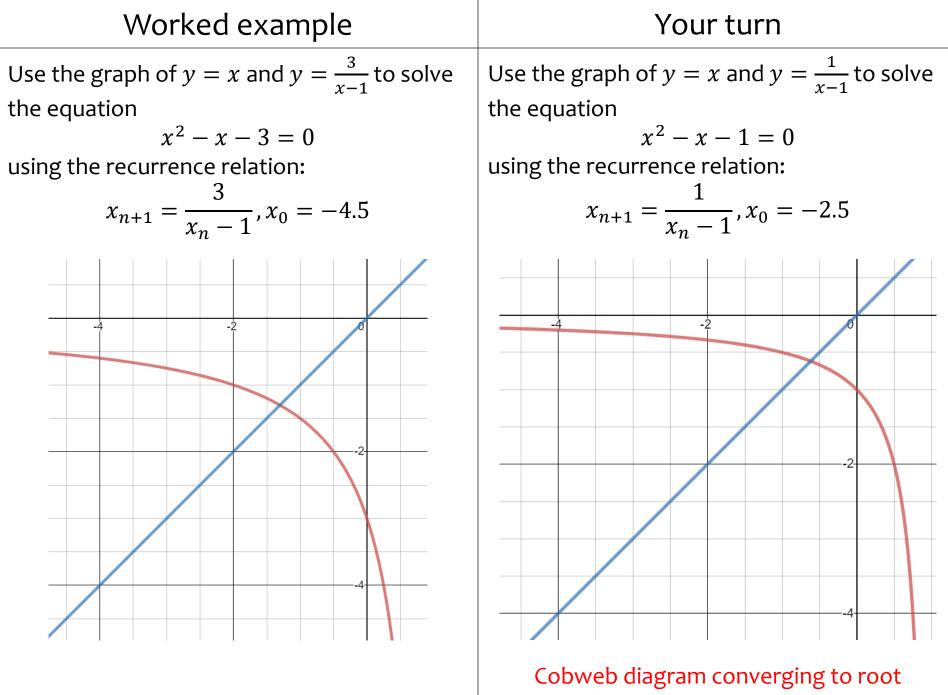
| Worked example                                                                                       | Your turn                                                                                                          |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| $f(x) = e^{x-2} + x - 5$<br>a) Show that $f(x) = 0$ can be written as:<br>$x = \ln(5-x) + 2,  x < 5$ | $f(x) = e^{x-1} + x - 6$<br>a) Show that $f(x) = 0$ can be written as:<br>$x = \ln(6-x) + 1$ , $x < 6$<br>a) Shown |
|                                                                                                      |                                                                                                                    |

| Worked example                                                                                                                                                                                                                                                                                                                                              | Your turn                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $f(x) = e^{x-2} + x - 5$<br>a) Show that $f(x) = 0$ can be written as:<br>$x = \ln(5 - x) + 2$ , $x < 5$<br>The root of $f(x) = 0$ is $\alpha$ .<br>The iterative formula<br>$x_{n+1} = \ln(5 - x_n) + 2$ , $x_0 = 3$<br>is used to find an approximate value for $\alpha$<br>b) Calculate the values of $x_1, x_2$ and $x_3$ to<br>four<br>decimal places. | $f(x) = e^{x-1} + x - 6$<br>a) Show that $f(x) = 0$ can be written as:<br>$x = \ln(6 - x) + 1$ , $x < 6$<br>The root of $f(x) = 0$ is $\beta$ .<br>The iterative formula<br>$x_{n+1} = \ln(6 - x_n) + 1$ , $x_0 = 2$<br>is used to find an approximate value for $\beta$<br>b) Calculate the values of $x_1, x_2$ and $x_3$ to<br>four<br>decimal places. |
|                                                                                                                                                                                                                                                                                                                                                             | b)<br>$x_0 = 2$<br>$x_1 = \ln(6 - 2) + 1$<br>= 2.3863<br>$x_2 = 2.2847 \dots$<br>$x_3 = 2.3125$                                                                                                                                                                                                                                                           |

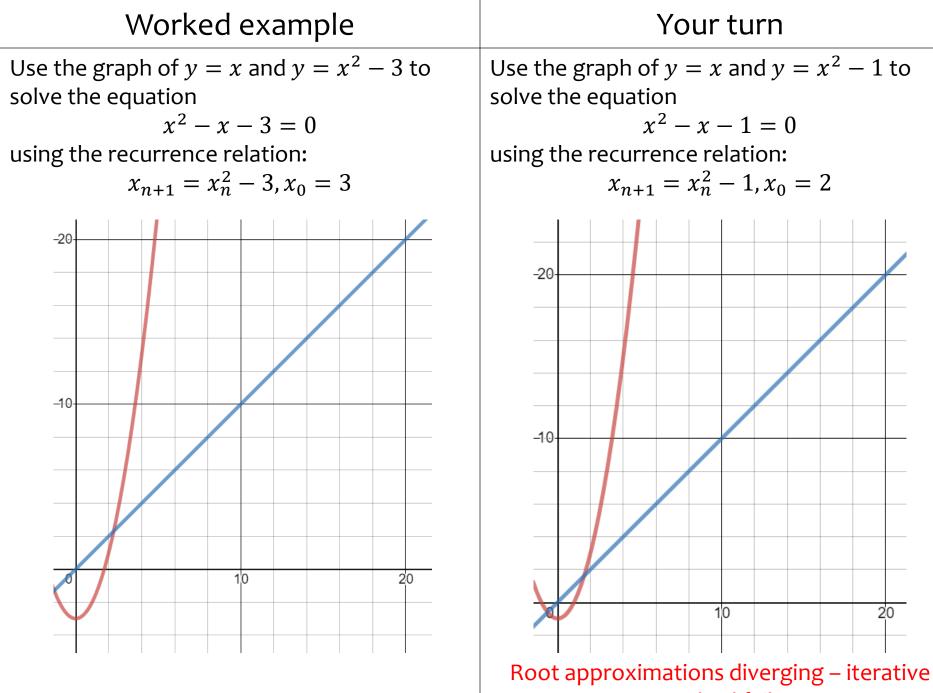
| Worked example                                                                                                                                                                                                                                                                                                                                       | Your turn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x = \ln(5 - x) + 2,  x < 5$ The root of $f(x) = 0$ is $\alpha$ . The iterative formula $x_{n+1} = \ln(5 - x_n) + 2,  x_0 = 3$ is used to find an approximate value for $\alpha$ b) Calculate the values of $x_1, x_2$ and $x_3$ to four decimal places. c) By choosing a suitable interval, show that $\alpha = 2.792$ correct to 3 decimal places. | $f(x) = e^{x-1} + x - 6$ a) Show that $f(x) = 0$ can be written as:<br>$x = \ln(6 - x) + 1$ , $x < 6$<br>The root of $f(x) = 0$ is $\alpha$ .<br>The iterative formula<br>$x_{n+1} = \ln(6 - x_n) + 1$ , $x_0 = 2$<br>is used to find an approximate value for $\alpha$<br>b) Calculate the values of $x_1, x_2$ and $x_3$ to<br>four<br>decimal places.<br>c) By choosing a suitable interval, show that<br>$\beta = 2.307$ correct to 3 decimal places.<br>c)<br>$f(2.3065) = -0.00027 \dots < 0$<br>$f(2.3075) = 0.0044 \dots > 0$<br>Sign change and $g(x)$ continuous in the<br>interval [2.3065, 2.3075]<br>$\therefore 2.3065 < \beta < 2.3075$ |


| Worked example                                                                                              | Your turn                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| $f(x) = x^3 - 5x^2 - 3x + 2$ (a) Show that the equation $f(x) = 0$ has a root in the interval $5 < x < 6$ . | $g(x) = x^3 - 3x^2 - 2x + 5$ (a) Show that the equation $g(x) = 0$ has a root in the interval $3 < x < 4$ .                                      |
|                                                                                                             | (a)<br>g(3) = -1 < 0<br>g(4) = 13 > 0<br>Change of sign and $g(x)$ continuous in the interval [3, 4]<br>$\therefore$ root in the interval [3, 4] |

| Worked example                                                                                                                                                                                                                                                                                               | Your turn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) Show that the equation $f(x) = 0$ has a root in the interval $5 < x < 6$ .<br>(b) Use the iterative formula<br>$x_{n+1} = \sqrt{\frac{x_n^3 - 3x_n + 2}{5}}$<br>to calculate the values of $x_1, x_2$ and $x_3$ , giving your answers to 4 decimal places, and taking:<br>(i) $x_0 = 0.5$ (ii) $x_0 = 6$ | $g(x) = x^3 - 3x^2 - 2x + 5$ (a) Show that the equation $g(x) = 0$ has a root in the interval $3 < x < 4$ .<br>(b) Use the iterative formula<br>$x_{n+1} = \sqrt{\frac{x_n^3 - 2x_n + 5}{3}}$ to calculate the values of $x_1, x_2$ and $x_3$ , giving your answers to 4 decimal places, and taking:<br>(i) $x_0 = 1.5$ (ii) $x_0 = 4$<br>(b)<br>i)<br>$x_1 = \sqrt{\frac{1.5^3 - 2(1.5) + 5}{3}} = 1.3385$<br>$x_2 = 1.2544$<br>$x_3 = 1.2200$<br>Convergent as the change in the root on each iteration is decreasing. The iterative method will find the root.<br>ii)<br>$x_1 = \sqrt{\frac{4^3 - 2(4) + 5}{3}} = 4.5092$<br>$x_2 = 5.4058$<br>$x_3 = 7.1219$<br>Divergent as the change in the root on each iteration is increasing. |
|                                                                                                                                                                                                                                                                                                              | The iterative method has failed to find the root.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |


| Worked example                                                                                                            | Your turn                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| $f(x) = x^{3} + 4x^{2} + 3x - 12$ (a) Show that the equation can be written as $x = \sqrt{\frac{3(4-x)}{4+x}}, x \neq -4$ | $g(x) = x^{3} + 3x^{2} + 4x - 12$ (a) Show that the equation can be written as $x = \sqrt{\frac{4(3-x)}{3+x}}, x \neq -3$ |
|                                                                                                                           | (a) Shown                                                                                                                 |

| Worked example                                                             | Your turn                                                                  |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| $f(x) = x^3 + 4x^2 + 3x - 12$ (a) Show that the equation can be written as | $g(x) = x^3 + 3x^2 + 4x - 12$ (a) Show that the equation can be written as |
| $x = \sqrt{\frac{3(4-x)}{4+x}}, x \neq -4$                                 | $x = \sqrt{\frac{4(3-x)}{3+x}}, x \neq -3$                                 |
| The equation $f(x) = 0$ has a single root                                  | The equation $g(x) = 0$ has a single root                                  |
| between 1 and 2.                                                           | between 1 and 2.                                                           |
| (b) Use the iterative formula                                              | (b) Use the iterative formula                                              |
| $x_{n+1} = \sqrt{\frac{4(3-x_n)}{3+x_n}}$ , $n \ge 0$ , $x_0 = 1$          | $x_{n+1} = \sqrt{\frac{4(3-x_n)}{3+x_n}}$ , $n \ge 0$ , $x_0 = 1$          |
| to calculate the values of $x_1, x_2$ and $x_3$ , giving                   | to calculate the values of $x_1, x_2$ and $x_3$ , giving                   |
| your answers to 2 decimal places.                                          | your answers to 2 decimal places.                                          |
|                                                                            | (b)                                                                        |
|                                                                            | $x_1 = \sqrt{\frac{4(3-1)}{3+1}} = 1.41$                                   |
|                                                                            | $x_2 = 1.20$                                                               |
|                                                                            | $x_3 = 1.31$                                                               |
|                                                                            |                                                                            |


| Worked example                                                             | Your turn                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $f(x) = x^3 + 4x^2 + 3x - 12$ (a) Show that the equation can be written as | $g(x) = x^3 + 3x^2 + 4x - 12$ (a) Show that the equation can be written as                                                                                                                                                               |
| $x = \sqrt{\frac{3(4-x)}{4+x}}, x \neq -4$                                 | $x = \sqrt{\frac{4(3-x)}{3+x}}, x \neq -3$                                                                                                                                                                                               |
| The equation $f(x) = 0$ has a single root                                  | The equation $g(x) = 0$ has a single root                                                                                                                                                                                                |
| between 1 and 2.                                                           | between 1 and 2.                                                                                                                                                                                                                         |
| (b) Use the iterative formula                                              | (b) Use the iterative formula                                                                                                                                                                                                            |
| $x_{n+1} = \sqrt{\frac{4(3-x_n)}{3+x_n}}$ , $n \ge 0$ , $x_0 = 1$          | $x_{n+1} = \sqrt{\frac{4(3-x_n)}{3+x_n}}$ , $n \ge 0, x_0 = 1$                                                                                                                                                                           |
| to calculate the values of $x_1, x_2$ and $x_3$ , giving                   | to calculate the values of $x_1, x_2$ and $x_3$ , giving                                                                                                                                                                                 |
| your answers to 2 decimal places.                                          | your answers to 2 decimal places.                                                                                                                                                                                                        |
| (c) The root of $f(x) = 0$ is $\alpha$ . By choosing a                     | (c) The root of $g(x) = 0$ is $\beta$ . By choosing a                                                                                                                                                                                    |
| suitable interval, prove that $\alpha = 1.253$ (3 dp)                      | suitable interval, prove that $\beta = 1.272$ (3 dp)                                                                                                                                                                                     |
|                                                                            | (c)<br>$g(1.2715) = -0.00821 \dots < 0$<br>$g(1.2725) = 0.00827 \dots > 0$<br>Sign change and $g(x)$ continuous in the<br>interval [1.2715, 1.2725]<br>$\therefore 1.2715 < \beta < 1.2725$<br>$\therefore \beta = 1.272 (3 \text{ dp})$ |



Graphs used with permission from DESMOS: <u>https://www.desmos.com/</u>



Graphs used with permission from DESMOS: <u>https://www.desmos.com/</u>



Graphs used with permission from DESMOS: <u>https://www.@etboc.fa</u>ils