10.2) Iteration

$$
f(x)=x^{2}-5 x-3
$$

a) Show that $f(x)=0$ can be written as:
i) $x=\frac{x^{2}-3}{5}$
ii) $x=\sqrt{5 x+3}$

$$
g(x)=x^{2}-6 x+2
$$

a) Show that $g(x)=0$ can be written as:

$$
\begin{array}{lll}
\text { i) } x=\frac{x^{2}+2}{6} & \text { ii) } x=\sqrt{6 x-2} & \text { iii) } x=6-\frac{2}{x}
\end{array}
$$

a) Shown

$$
f(x)=x^{2}-5 x-3
$$

a) Show that $f(x)=0$ can be written as: i) $x=\frac{x^{2}-3}{5}$
ii) $x=\sqrt{5 x+3}$
iii) $x=5+\frac{3}{x}$
b) Starting with $x_{0}=3$ use each iterative formula to find a root of the equation $f(x)=0$, rounding your answers to 3 decimal places
$g(x)=x^{2}-6 x+2$
a) Show that $g(x)=0$ can be written as:
i) $x=\frac{x^{2}+2}{6}$
ii) $x=\sqrt{6 x-2}$
iii) $x=6-\frac{2}{x}$
b) Starting with $x_{0}=4$ use each iterative formula to find a root of the equation $g(x)=0$, rounding your answers to 3 decimal places
b) i) $x=0.354$ (3 dp)
ii) $x=5.646(3 \mathrm{dp})$
iii) $x=5.646$ (3 dp)

Worked example

Your turn

$$
f(x)=e^{x-2}+x-5
$$

$$
f(x)=e^{x-1}+x-6
$$

a) Show that $f(x)=0$ can be written as:

$$
x=\ln (5-x)+2, \quad x<5
$$

a) Show that $f(x)=0$ can be written as:

$$
x=\ln (6-x)+1, \quad x<6
$$

a) Shown

Worked example

Your turn

$$
f(x)=e^{x-2}+x-5
$$

a) Show that $f(x)=0$ can be written as:

$$
x=\ln (5-x)+2, \quad x<5
$$

The root of $f(x)=0$ is α.
The iterative formula

$$
x_{n+1}=\ln \left(5-x_{n}\right)+2, \quad x_{0}=3
$$ is used to find an approximate value for α b) Calculate the values of x_{1}, x_{2} and x_{3} to four

decimal places.

$$
f(x)=e^{x-1}+x-6
$$

a) Show that $f(x)=0$ can be written as:

$$
x=\ln (6-x)+1, \quad x<6
$$

The root of $f(x)=0$ is β.
The iterative formula

$$
x_{n+1}=\ln \left(6-x_{n}\right)+1, \quad x_{0}=2
$$

is used to find an approximate value for β
b) Calculate the values of x_{1}, x_{2} and x_{3} to four
decimal places.
b)
$x_{0}=2$
$x_{1}=\ln (6-2)+1$
$=2.3863$
$x_{2}=2.2847 \ldots$
$x_{3}=2.3125$

Worked example

$$
f(x)=e^{x-2}+x-5
$$

a) Show that $f(x)=0$ can be written as:

$$
x=\ln (5-x)+2, \quad x<5
$$

The root of $f(x)=0$ is α.
The iterative formula

$$
x_{n+1}=\ln \left(5-x_{n}\right)+2, \quad x_{0}=3
$$

is used to find an approximate value for α
b) Calculate the values of x_{1}, x_{2} and x_{3} to four
decimal places.
c) By choosing a suitable interval, show that $\alpha=2.792$ correct to 3 decimal places.

Your turn

$$
f(x)=e^{x-1}+x-6
$$

a) Show that $f(x)=0$ can be written as:

$$
x=\ln (6-x)+1, \quad x<6
$$

The root of $f(x)=0$ is α.
The iterative formula

$$
x_{n+1}=\ln \left(6-x_{n}\right)+1, \quad x_{0}=2
$$

is used to find an approximate value for α
b) Calculate the values of x_{1}, x_{2} and x_{3} to four
decimal places.
c) By choosing a suitable interval, show that $\beta=2.307$ correct to 3 decimal places.
c)
$f(2.3065)=-0.00027 \ldots<0$
$f(2.3075)=0.0044 \ldots>0$
Sign change and $g(x)$ continuous in the interval [2.3065, 2.3075]
$\therefore 2.3065<\beta<2.3075$
$\therefore \beta=2.307$ (3dp)

$$
f(x)=x^{3}-5 x^{2}-3 x+2
$$

(a) Show that the equation $f(x)=0$ has a root in the interval $5<x<6$.

$$
g(x)=x^{3}-3 x^{2}-2 x+5
$$

(a) Show that the equation $g(x)=0$ has a root in the interval $3<x<4$.
(a)
$g(3)=-1<0$
$g(4)=13>0$
Change of sign and $g(x)$ continuous in the interval [3, 4]
\therefore root in the interval $[3,4]$

Worked example

$$
f(x)=x^{3}-5 x^{2}-3 x+2
$$

(a) Show that the equation $f(x)=0$ has a root in the interval $5<x<6$.
(b) Use the iterative formula

$$
x_{n+1}=\sqrt{\frac{x_{n}^{3}-3 x_{n}+2}{5}}
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 4 decimal places, and taking:
(i) $x_{0}=0.5$
(ii) $x_{0}=6$

Your turn

$$
g(x)=x^{3}-3 x^{2}-2 x+5
$$

(a) Show that the equation $g(x)=0$ has a root in the interval $3<x<4$.
(b) Use the iterative formula

$$
x_{n+1}=\sqrt{\frac{x_{n}^{3}-2 x_{n}+5}{3}}
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 4 decimal places, and taking:
(i) $x_{0}=1.5$
(ii) $x_{0}=4$
(b)
i)
$x_{1}=\sqrt{\frac{1.5^{3}-2(1.5)+5}{3}}=1.3385 \ldots$
$x_{2}=1.2544 \ldots$
$x_{3}=1.2200 \ldots$
Convergent as the change in the root on each iteration is
decreasing. The iterative method will find the root.
ii)
$x_{1}=\sqrt{\frac{4^{3}-2(4)+5}{3}}=4.5092 \ldots$
$x_{2}=5.4058$
$x_{3}=7.1219 \ldots$
Divergent as the change in the root on each iteration is increasing.
The iterative method has failed to find the root.

Worked example

Your turn

$$
f(x)=x^{3}+4 x^{2}+3 x-12
$$

(a) Show that the equation can be written as

$$
x=\sqrt{\frac{3(4-x)}{4+x}}, x \neq-4
$$

$$
g(x)=x^{3}+3 x^{2}+4 x-12
$$

(a) Show that the equation can be written as

$$
x=\sqrt{\frac{4(3-x)}{3+x}}, x \neq-3
$$

(a) Shown

Worked example

Your turn

$$
f(x)=x^{3}+4 x^{2}+3 x-12
$$

(a) Show that the equation can be written as

$$
x=\sqrt{\frac{3(4-x)}{4+x}}, x \neq-4
$$

The equation $f(x)=0$ has a single root between 1 and 2 .
(b) Use the iterative formula

$$
x_{n+1}=\sqrt{\frac{4\left(3-x_{n}\right)}{3+x_{n}}}, n \geq 0, x_{0}=1
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 2 decimal places.

$$
g(x)=x^{3}+3 x^{2}+4 x-12
$$

(a) Show that the equation can be written as

$$
x=\sqrt{\frac{4(3-x)}{3+x}}, x \neq-3
$$

The equation $g(x)=0$ has a single root between 1 and 2 .
(b) Use the iterative formula

$$
x_{n+1}=\sqrt{\frac{4\left(3-x_{n}\right)}{3+x_{n}}}, n \geq 0, x_{0}=1
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 2 decimal places.
(b)
$x_{1}=\sqrt{\frac{4(3-1)}{3+1}}=1.41$
$x_{2}=1.20$
$x_{3}=1.31$

Worked example

$$
f(x)=x^{3}+4 x^{2}+3 x-12
$$

(a) Show that the equation can be written as

$$
x=\sqrt{\frac{3(4-x)}{4+x}}, x \neq-4
$$

The equation $f(x)=0$ has a single root between 1 and 2 .
(b) Use the iterative formula

$$
x_{n+1}=\sqrt{\frac{4\left(3-x_{n}\right)}{3+x_{n}}}, n \geq 0, x_{0}=1
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 2 decimal places.
(c) The root of $f(x)=0$ is α. By choosing a suitable interval, prove that $\alpha=1.253$ (3 dp)

Your turn

$$
g(x)=x^{3}+3 x^{2}+4 x-12
$$

(a) Show that the equation can be written as

$$
x=\sqrt{\frac{4(3-x)}{3+x}}, x \neq-3
$$

The equation $g(x)=0$ has a single root between 1 and 2 .
(b) Use the iterative formula

$$
x_{n+1}=\sqrt{\frac{4\left(3-x_{n}\right)}{3+x_{n}}}, n \geq 0, x_{0}=1
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 2 decimal places.
(c) The root of $g(x)=0$ is β. By choosing a suitable interval, prove that $\beta=1.272$ (3 dp)
(c)

$$
\begin{aligned}
& g(1.2715)=-0.00821 \ldots<0 \\
& g(1.2725)=0.00827 \ldots>0
\end{aligned}
$$

Sign change and $g(x)$ continuous in the interval [1.2715, 1.2725]
$\therefore 1.2715<\beta<1.2725$
$\therefore \beta=1.272$ (3 dp)

Your turn

Use the graph of $y=x$ and $y=\sqrt{x+3}$ to solve the equation

$$
x^{2}-x-3=0
$$

using the recurrence relation:

$$
x_{n+1}=\sqrt{x_{n}+3}, x_{0}=1
$$

Use the graph of $y=x$ and $y=\sqrt{x+1}$ to solve the equation

$$
x^{2}-x-1=0
$$

using the recurrence relation:

$$
x_{n+1}=\sqrt{x_{n}+1}, x_{0}=1
$$

Staircase diagram converging to root

Worked example

Your turn

Use the graph of $y=x$ and $y=\frac{3}{x-1}$ to solve the equation

$$
x^{2}-x-3=0
$$

using the recurrence relation:

$$
x_{n+1}=\frac{3}{x_{n}-1}, x_{0}=-4.5
$$

Use the graph of $y=x$ and $y=\frac{1}{x-1}$ to solve the equation

$$
x^{2}-x-1=0
$$

using the recurrence relation:

$$
x_{n+1}=\frac{1}{x_{n}-1}, x_{0}=-2.5
$$

Cobweb diagram converging to root

Your turn

Use the graph of $y=x$ and $y=x^{2}-3$ to solve the equation

$$
x^{2}-x-3=0
$$

using the recurrence relation:

$$
x_{n+1}=x_{n}^{2}-3, x_{0}=3
$$

Use the graph of $y=x$ and $y=x^{2}-1$ to solve the equation

$$
x^{2}-x-1=0
$$

using the recurrence relation:

$$
x_{n+1}=x_{n}^{2}-1, x_{0}=2
$$

Root approximations diverging - iterative Graphs used with permission from DESMOS: https://www. 1 Resthadedails

