10.2) Forces as vectors

Your turn

The forces $3 \boldsymbol{i}-2 \boldsymbol{j},-4 \boldsymbol{i}+\boldsymbol{j},-\mathbf{2} \boldsymbol{i}-3 \boldsymbol{j}$ and $a \boldsymbol{i}+b \boldsymbol{j}$ act on an object which is in equilibrium. Find the values of a and b.

The forces $2 \boldsymbol{i}+3 \boldsymbol{j}, 4 \boldsymbol{i}-\boldsymbol{j},-3 \boldsymbol{i}+2 \boldsymbol{j}$ and $a \boldsymbol{i}+b \boldsymbol{j}$ act on an object which is in equilibrium. Find the values of a and b.

$$
a=-3, b=-4
$$

Your turn

The vector i is due east and j due north. A particle begins at rest at the origin. It is acted on by three forces $(3 \boldsymbol{i}-\boldsymbol{j}) \mathrm{N},(2 \boldsymbol{i}+3 \boldsymbol{j})$ N and $(-4 \boldsymbol{i}+\boldsymbol{j}) \mathrm{N}$.
(a) Find the resultant force in the form $p \boldsymbol{i}+q \boldsymbol{j}$.
(b) Work out the magnitude and bearing of the resultant force.

The vector i is due east and j due north.
A particle begins at rest at the origin.
It is acted on by three forces $(2 \boldsymbol{i}+\boldsymbol{j}) \mathrm{N},(3 \boldsymbol{i}-2 \boldsymbol{j})$ N and $(-\boldsymbol{i}+4 \boldsymbol{j}) \mathrm{N}$.
(a) Find the resultant force in the form $p \boldsymbol{i}+q \boldsymbol{j}$.
(b) Work out the magnitude and bearing of the resultant force.
a) $4 \boldsymbol{i}+3 \boldsymbol{j}$
b) $053.1^{\circ}(1 \mathrm{dp})$

Your turn

Three forces F_{1}, F_{2} and F_{3} acting on a particle P are:

$$
\begin{aligned}
& F_{1}=(9 \boldsymbol{i}-7 \boldsymbol{j}) N \\
& F_{2}=(6 \boldsymbol{i}+5 \boldsymbol{j}) N \\
& F_{3}=(p \boldsymbol{i}+q \boldsymbol{j}) N
\end{aligned}
$$

where p and q are constants.
Given that P is in equilibrium,
a) Find the value of p and the value of q

The force F_{3} is now removed. The resultant of F_{1} and F_{2} is R. Find:
b) The magnitude of R
c) The angle, to the nearest degree, that the direction of R makes with \boldsymbol{j}.

Three forces F_{1}, F_{2} and F_{3} acting on a particle P are:

$$
\begin{aligned}
& F_{1}=(7 \boldsymbol{i}-9 \boldsymbol{j}) N \\
& F_{2}=(5 \boldsymbol{i}+6 \boldsymbol{j}) N \\
& F_{3}=(p \boldsymbol{i}+q \boldsymbol{j}) N
\end{aligned}
$$

where p and q are constants.
Given that P is in equilibrium,
a) Find the value of p and the value of q

The force F_{3} is now removed. The resultant of F_{1} and F_{2} is R. Find:
b) The magnitude of R
c) The angle, to the nearest degree, that the
a) $\underset{p}{\text { direction }}=-12, q=3$ makes with \boldsymbol{j}.
b) $12.4 \mathrm{~N}(3 \mathrm{sf})$
c) 104°

Two forces F_{1} and F_{2} acting on a particle P are:

$$
\begin{gathered}
F_{1}=(3 \boldsymbol{i}-2 \boldsymbol{j}) N \\
F_{2}=(p \boldsymbol{i}+3 p \boldsymbol{j}) N
\end{gathered}
$$

where p is a positive constant.
a) Find the angle between F_{2} and \boldsymbol{i}

The resultant of F_{1} and F_{2} is R.
b) Given that R is parallel to \boldsymbol{j}, find the value of p

Two forces F_{1} and F_{2} acting on a particle P are:

$$
\begin{gathered}
F_{1}=(\boldsymbol{i}-3 \boldsymbol{j}) N \\
F_{2}=(p \boldsymbol{i}+2 p \boldsymbol{j}) N
\end{gathered}
$$

where p is a positive constant.
a) Find the angle between F_{2} and \boldsymbol{j}

The resultant of F_{1} and F_{2} is R.
b) Given that R is parallel to \boldsymbol{i}, find the value of p
a) 26.6°
b) $p=\frac{3}{2}$

Two forces F_{1} and F_{2} acting on a particle P are:

$$
\begin{gathered}
F_{1}=(3 \boldsymbol{i}-2 \boldsymbol{j}) N \\
F_{2}=(p \boldsymbol{i}+3 p \boldsymbol{j}) N
\end{gathered}
$$

where p is a positive constant.
The resultant of F_{1} and F_{2} is R.
Given that R is parallel to $13 \boldsymbol{i}+10 \boldsymbol{j}$, find the value of p

Two forces F_{1} and F_{2} acting on a particle P are:

$$
\begin{gathered}
F_{1}=(2 \boldsymbol{i}-3 \boldsymbol{j}) N \\
F_{2}=(p \boldsymbol{i}+2 p \boldsymbol{j}) N
\end{gathered}
$$

where p is a positive constant.
The resultant of F_{1} and F_{2} is R.
Given that R is parallel to $12 \boldsymbol{i}+11 \boldsymbol{j}$, find the value of p

$$
p=\frac{58}{13}
$$

