10.2) Forces as vectors

Worked example	Your turn
The forces $3i - 2j$, $-4i + j$, $-2i - 3j$ and $ai + bj$ act on an object which is in equilibrium. Find the values of a and b .	The forces $2\mathbf{i} + 3\mathbf{j}$, $4\mathbf{i} - \mathbf{j}$, $-3\mathbf{i} + 2\mathbf{j}$ and $a\mathbf{i} + b\mathbf{j}$ act on an object which is in equilibrium. Find the values of a and b .
	a = -3, b = -4

Worked example	Your turn
 The vector <i>i</i> is due east and <i>j</i> due north. A particle begins at rest at the origin. It is acted on by three forces (3<i>i</i> - <i>j</i>) N, (2<i>i</i> + 3<i>j</i>) N and (-4<i>i</i> + <i>j</i>) N. (a) Find the resultant force in the form <i>pi</i> + <i>qj</i>. (b) Work out the magnitude and bearing of the resultant force. 	 The vector <i>i</i> is due east and <i>j</i> due north. A particle begins at rest at the origin. It is acted on by three forces (2<i>i</i> + <i>j</i>) N, (3<i>i</i> - 2<i>j</i>) N and (-<i>i</i> + 4<i>j</i>) N. (a) Find the resultant force in the form <i>pi</i> + <i>qj</i>. (b) Work out the magnitude and bearing of the resultant force. a) 4<i>i</i> + 3<i>j</i> b) 053.1° (1 dp)
	b) 053.1° (1 dp)

Worked example	Your turn
Worked exampleThree forces F_1, F_2 and F_3 acting on a particle P are: $F_1 = (9i - 7j) N$ $F_2 = (6i + 5j) N$ $F_2 = (6i + 5j) N$ $F_3 = (pi + qj) N$ where p and q are constants.Given that P is in equilibrium,a) Find the value of p and the value of q The force F_3 is now removed. The resultant of F_1 and F_2 is R . Find:b) The magnitude of R c) The angle, to the nearest degree, that the direction of R makes with j .	Your turnThree forces F_1, F_2 and F_3 acting on a particle P are: $F_1 = (7i - 9j) N$ $F_2 = (5i + 6j) N$ $F_2 = (5i + 6j) N$ $F_3 = (pi + qj) N$ where p and q are constants.Given that P is in equilibrium,a) Find the value of p and the value of q The force F_3 is now removed. The resultant of F_1 and F_2 is R . Find:b) The magnitude of R c) The angle, to the nearest degree, that the direction of R makes with j .
c) The angle, to the nearest degree, that the direction of <i>R</i> makes with <i>j</i> .	 c) The angle, to the nearest degree, that the direction of R makes with j. a) p = -12, q = 3 b) 12.4 N (3 sf) c) 104°

Worked example	Your turn
Two forces F_1 and F_2 acting on a particle P are: $F_1 = (3i - 2j) N$ $F_2 = (pi + 3pj) N$ where p is a positive constant. a) Find the angle between F_2 and i The resultant of F_1 and F_2 is R . b) Given that R is parallel to j , find the value of p	Two forces F_1 and F_2 acting on a particle P are: $F_1 = (i - 3j) N$ $F_2 = (pi + 2pj) N$ where p is a positive constant. a) Find the angle between F_2 and j The resultant of F_1 and F_2 is R . b) Given that R is parallel to i , find the value of p a) 26.6° b) $p = \frac{3}{2}$

Worked example	Your turn
Two forces F_1 and F_2 acting on a particle P are: $F_1 = (3i - 2j) N$ $F_2 = (pi + 3pj) N$ where p is a positive constant. The resultant of F_1 and F_2 is R . Given that R is parallel to $13i + 10j$, find the value of p	Two forces F_1 and F_2 acting on a particle P are: $F_1 = (2i - 3j) N$ $F_2 = (pi + 2pj) N$ where p is a positive constant. The resultant of F_1 and F_2 is R . Given that R is parallel to $12i + 11j$, find the value of p
	$p = \frac{58}{13}$

$$p = \frac{58}{13}$$