10.1) Locating roots

Show that $f(x)=e^{x}+3 x-2$ has a root between $x=0.2$ and $x=0.3$

Show that $f(x)=e^{x}+2 x-3$ has a root
between $x=0.5$ and $x=0.6$

$$
\begin{aligned}
& f(0.5)=-0.351 \ldots<0 \\
& f(0.6)=0.022 \ldots>0
\end{aligned}
$$

Change of sign and $f(x)$ continuous in the interval [0.5, 0.6]
\therefore Root in the interval $[0.5,0.6]$

Your turn

Explain why there are no real roots to
$f(x)=\frac{1}{x-2}$ between $x=1$ and $x=3$

Explain why there are no real roots to
$f(x)=\frac{1}{x}$ between $x=-1$ and $x=1$
$f(x)$ not continuous in the interval
$[-1,1]$

Worked example

Your turn

Using the same axes, sketch the graphs of $y=e^{x}$ and $y=\frac{1}{x}$
a) Explain how your diagram shows that the function $f(x)=e^{x}-\frac{1}{x}$ has only one root

Using the same axes, sketch the graphs of $y=\ln x$ and $y=\frac{1}{x}$
a) Explain how your diagram shows that the function $f(x)=\ln x-\frac{1}{x}$ has only one root
a) The lines intersect where $\ln x=\frac{1}{x} \rightarrow \ln x-\frac{1}{x}=0$

Thus the roots of $f(x)$ correspond to the points of intersection, and there is only one point of intersection on the graph.

Your turn

Using the same axes, sketch the graphs of $y=e^{x}$ and $y=\frac{1}{x}$
a) Explain how your diagram shows that the function $f(x)=e^{x}-\frac{1}{x}$ has only one root
b) Show that this root lies in the interval $0.5<x<0.6$

Using the same axes, sketch the graphs of $y=\ln x$ and $y=\frac{1}{x}$
a) Explain how your diagram shows that the function $f(x)=\ln x-\frac{1}{x}$ has only one root
b) Show that this root lies in the interval $1.7<x<1.8$
b)

$$
\begin{aligned}
& f(1.7)=-0.0576 \ldots<0 \\
& f(1.8)=0.0322 \ldots>0
\end{aligned}
$$

Change of sign and $f(x)$ continuous in the interval [1.7, 1.8]
\therefore Root in the interval $[1.7,1.8]$

Your turn

Using the same axes, sketch the graphs of $y=e^{x}$ and $y=\frac{1}{x}$
a) Explain how your diagram shows that the function $f(x)=e^{x}-\frac{1}{x}$ has only one root
b) Show that this root lies in the interval $0.5<x<0.6$
c) Show that the root is 0.567 to 3 decimal places

Using the same axes, sketch the graphs of $y=\ln x$ and $y=\frac{1}{x}$
a) Explain how your diagram shows that the function $f(x)=\ln x-\frac{1}{x}$ has only one root
b) Show that this root lies in the interval $1.7<x<1.8$
c) Show that the root is 1.763 to 3 decimal places
c) $\quad f(1.7625)=-0.00064<0$ $f(1.7635)=0.00024>0$
Change of sign and $f(x)$ continuous in the interval $[1.7625,1.7635$]
$\therefore 1.7625<\alpha<1.7635$,
$\therefore \alpha=1.763$ correct to 3 dp .

