10) Numerical methods

10.1) Locating roots
10.2) Iteration
10.3) The Newton-Raphson method
10.4) Applications to modelling

10.1) Locating roots

Chapter CONTENTS

Worked example	Your turn
Show that $f(x) = e^x + 3x - 2$ has a root between $x = 0.2$ and $x = 0.3$	Show that $f(x) = e^x + 2x - 3$ has a root between $x = 0.5$ and $x = 0.6$
	$f(0.5) = -0.351 \dots < 0$ $f(0.6) = 0.022 \dots > 0$ Change of sign and $f(x)$ continuous in the interval [0.5, 0.6] \therefore Root in the interval [0.5, 0.6]

Worked example	Your turn
Explain why there are no real roots to $f(x) = \frac{1}{x-2}$ between $x = 1$ and $x = 3$	Explain why there are no real roots to $f(x) = \frac{1}{x}$ between $x = -1$ and $x = 1$ f(x) not continuous in the interval [-1, 1]

Worked example	Your turn
Using the same axes, sketch the graphs of $y = e^x$ and $y = \frac{1}{x}$ a) Explain how your diagram shows that the function $f(x) = e^x - \frac{1}{x}$ has only one root	Using the same axes, sketch the graphs of $y = \ln x$ and $y = \frac{1}{x}$ a) Explain how your diagram shows that the function $f(x) = \ln x - \frac{1}{x}$ has only one root a) The lines intersect where $\ln x = \frac{1}{x} \rightarrow \ln x - \frac{1}{x} = 0$ Thus the roots of $f(x)$ correspond to the points of intersection, and there is only one point of intersection on the graph.

Graphs used with permission from DESMOS: <u>https://www.desmos.dom/</u>

Your turn
Using the same axes, sketch the graphs of $y = \ln x$ and $y = \frac{1}{x}$ a) Explain how your diagram shows that the function $f(x) = \ln x - \frac{1}{x}$ has only one
root b) Show that this root lies in the interval 1.7 < x < 1.8 b) $f(1.7) = -0.0576 \dots < 0$ $f(1.8) = 0.0322 \dots > 0$ Change of sign and $f(x)$ continuous in the interval [1.7, 1.8] \therefore Root in the interval [1.7, 1.8]

Worked example	Your turn
Using the same axes, sketch the graphs of $y = e^x$ and $y = \frac{1}{x}$ a) Explain how your diagram shows that the function $f(x) = e^x - \frac{1}{x}$ has only one root b) Show that this root lies in the interval 0.5 < x < 0.6 c) Show that the root is 0.567 to a decimal	Using the same axes, sketch the graphs of $y = \ln x$ and $y = \frac{1}{x}$ a) Explain how your diagram shows that the function $f(x) = \ln x - \frac{1}{x}$ has only one root b) Show that this root lies in the interval 1.7 < x < 1.8
places	c) Show that the root is 1.763 to 3 decimal places c) $f(1.7625) = -0.00064 < 0$ f(1.7635) = 0.00024 > 0 Change of sign and $f(x)$ continuous in the interval [1.7625, 1.7635] $\therefore 1.7625 < \alpha < 1.7635$, $\therefore \alpha = 1.763$ correct to 3dp.

10.2) Iteration

Chapter CONTENTS

Worked example	Your turn
$f(x) = x^2 - 5x - 3$ a) Show that $f(x) = 0$ can be written as: i) $x = \frac{x^2 - 3}{5}$ ii) $x = \sqrt{5x + 3}$ iii) $x = 5 + \frac{3}{x}$	$g(x) = x^2 - 6x + 2$ a) Show that $g(x) = 0$ can be written as: i) $x = \frac{x^2 + 2}{6}$ ii) $x = \sqrt{6x - 2}$ iii) $x = 6 - \frac{2}{x}$
	a) Shown

Worked example	Your turn
$f(x) = x^2 - 5x - 3$ a) Show that $f(x) = 0$ can be written as: i) $x = \frac{x^2 - 3}{5}$ ii) $x = \sqrt{5x + 3}$ iii) $x = 5 + \frac{3}{x}$ b) Starting with $x_0 = 3$ use each iterative formula to find a root of the equation f(x) = 0, rounding your answers to 3 decimal places	$g(x) = x^{2} - 6x + 2$ a) Show that $g(x) = 0$ can be written as: i) $x = \frac{x^{2}+2}{6}$ ii) $x = \sqrt{6x-2}$ iii) $x = 6 - \frac{2}{x}$ b) Starting with $x_{0} = 4$ use each iterative formula to find a root of the equation g(x) = 0, rounding your answers to 3 decimal places
	b) i) $x = 0.354$ (3 dp)

ii) x = 5.646 (3 dp)

iii) x = 5.646 (3 dp)

Worked example	Your turn
$f(x) = e^{x-2} + x - 5$ a) Show that $f(x) = 0$ can be written as: $x = \ln(5-x) + 2$, $x < 5$	$f(x) = e^{x-1} + x - 6$ a) Show that $f(x) = 0$ can be written as: $x = \ln(6 - x) + 1$, $x < 6$ a) Shown

Worked example	Your turn
$f(x) = e^{x-2} + x - 5$ a) Show that $f(x) = 0$ can be written as: $x = \ln(5 - x) + 2$, $x < 5$ The root of $f(x) = 0$ is α . The iterative formula $x_{n+1} = \ln(5 - x_n) + 2$, $x_0 = 3$ is used to find an approximate value for α b) Calculate the values of x_1, x_2 and x_3 to four decimal places.	$f(x) = e^{x-1} + x - 6$ a) Show that $f(x) = 0$ can be written as: $x = \ln(6 - x) + 1$, $x < 6$ The root of $f(x) = 0$ is β . The iterative formula $x_{n+1} = \ln(6 - x_n) + 1$, $x_0 = 2$ is used to find an approximate value for β b) Calculate the values of x_1, x_2 and x_3 to four decimal places.
	b) $x_0 = 2$ $x_1 = \ln(6 - 2) + 1$ = 2.3863 $x_2 = 2.2847 \dots$ $x_3 = 2.3125$

Worked example	Your turn
$f(x) = e^{x-2} + x - 5$ a) Show that $f(x) = 0$ can be written as: $x = \ln(5 - x) + 2$, $x < 5$ The root of $f(x) = 0$ is α . The iterative formula $x_{n+1} = \ln(5 - x_n) + 2$, $x_0 = 3$ is used to find an approximate value for α b) Calculate the values of x_1, x_2 and x_3 to four decimal places. c) By choosing a suitable interval, show that $\alpha = 2.792$ correct to 3 decimal places.	$f(x) = e^{x-1} + x - 6$ a) Show that $f(x) = 0$ can be written as: $x = \ln(6 - x) + 1$, $x < 6$ The root of $f(x) = 0$ is α . The iterative formula $x_{n+1} = \ln(6 - x_n) + 1$, $x_0 = 2$ is used to find an approximate value for α b) Calculate the values of x_1, x_2 and x_3 to four decimal places. c) By choosing a suitable interval, show that $\beta = 2.307$ correct to 3 decimal places. c) $f(2.3065) = -0.00027 \dots < 0$ $f(2.3075) = 0.0044 \dots > 0$ Sign change and $g(x)$ continuous in the interval [2.3065, 2.3075] $\therefore 2.3065 < \beta < 2.3075$

Worked example	Your turn
$f(x) = x^3 - 5x^2 - 3x + 2$ (a) Show that the equation $f(x) = 0$ has a root in the interval $5 < x < 6$.	$g(x) = x^3 - 3x^2 - 2x + 5$ (a) Show that the equation $g(x) = 0$ has a root in the interval $3 < x < 4$.
	(a) g(3) = -1 < 0 g(4) = 13 > 0 Change of sign and $g(x)$ continuous in the interval [3, 4] \therefore root in the interval [3, 4]

Worked example	Your turn
$f(x) = x^3 - 5x^2 - 3x + 2$ (a) Show that the equation $f(x) = 0$ has a root in the interval $5 < x < 6$. (b) Use the iterative formula $x_{n+1} = \sqrt{\frac{x_n^3 - 3x_n + 2}{5}}$ to calculate the values of x_1, x_2 and x_3 , giving your answers to 4 decimal places, and taking:	$g(x) = x^3 - 3x^2 - 2x + 5$ (a) Show that the equation $g(x) = 0$ has a root in the interval $3 < x < 4$. (b) Use the iterative formula $x_{n+1} = \sqrt{\frac{x_n^3 - 2x_n + 5}{3}}$ to calculate the values of x_1, x_2 and x_3 , giving your answers to 4 decimal places, and taking:
(i) $x_0 = 0.5$ (ii) $x_0 = 6$	(i) $x_0 = 1.5$ (ii) $x_0 = 4$ (b) i) $x_1 = \sqrt{\frac{1.5^3 - 2(1.5) + 5}{3}} = 1.3385$ $x_2 = 1.2544$ $x_3 = 1.2200$ Convergent as the change in the root on each iteration is decreasing. The iterative method will find the root. ii) $x_1 = \sqrt{\frac{4^3 - 2(4) + 5}{3}} = 4.5092$ $x_2 = 5.4058$ $x_3 = 7.1219$ Divergent as the change in the root on each iteration is increasing. The iterative method has failed to find the root.

Worked example	Your turn
$f(x) = x^{3} + 4x^{2} + 3x - 12$ (a) Show that the equation can be written as	$g(x) = x^{3} + 3x^{2} + 4x - 12$ (a) Show that the equation can be written as
$x = \sqrt{\frac{3(4-x)}{4+x}}, x \neq -4$	$x = \sqrt{\frac{4(3-x)}{3+x}}, x \neq -3$
	(a) Shown

Worked example	Your turn
$f(x) = x^3 + 4x^2 + 3x - 12$ (a) Show that the equation can be written as	$g(x) = x^3 + 3x^2 + 4x - 12$ (a) Show that the equation can be written as
$x = \sqrt{\frac{3(4-x)}{4+x}}, x \neq -4$	$x = \sqrt{\frac{4(3-x)}{3+x}}, x \neq -3$
The equation $f(x) = 0$ has a single root	The equation $g(x) = 0$ has a single root
between 1 and 2.	between 1 and 2.
(b) Use the iterative formula	(b) Use the iterative formula
$x_{n+1} = \sqrt{\frac{4(3-x_n)}{3+x_n}}$, $n \ge 0$, $x_0 = 1$	$x_{n+1} = \sqrt{\frac{4(3-x_n)}{3+x_n}}$, $n \ge 0$, $x_0 = 1$
to calculate the values of x_1, x_2 and x_3 , giving	to calculate the values of x_1, x_2 and x_3 , giving
your answers to 2 decimal places.	your answers to 2 decimal places.
	(b) $x_1 = \sqrt{\frac{4(3-1)}{3+1}} = 1.41$ $x_2 = 1.20$ $x_3 = 1.31$

Worked example	Your turn
$f(x) = x^3 + 4x^2 + 3x - 12$ (a) Show that the equation can be written as	$g(x) = x^3 + 3x^2 + 4x - 12$ (a) Show that the equation can be written as
$x = \sqrt{\frac{3(4-x)}{4+x}}, x \neq -4$	$x = \sqrt{\frac{4(3-x)}{3+x}}, x \neq -3$
The equation $f(x) = 0$ has a single root	The equation $g(x) = 0$ has a single root
between 1 and 2.	between 1 and 2.
(b) Use the iterative formula	(b) Use the iterative formula
$x_{n+1} = \sqrt{\frac{4(3-x_n)}{3+x_n}}$, $n \ge 0$, $x_0 = 1$	$x_{n+1} = \sqrt{\frac{4(3-x_n)}{3+x_n}}$, $n \ge 0$, $x_0 = 1$
to calculate the values of x_1 , x_2 and x_3 , giving	to calculate the values of x_1 , x_2 and x_3 , giving
your answers to 2 decimal places.	your answers to 2 decimal places.
(c) The root of $f(x) = 0$ is α . By choosing a	(c) The root of $g(x) = 0$ is β . By choosing a
suitable interval, prove that $\alpha = 1.253 (3 \text{ dp})$	suitable interval, prove that $\beta = 1.272$ (3 dp)
	(c) $g(1.2715) = -0.00821 \dots < 0$ $g(1.2725) = 0.00827 \dots > 0$ Sign change and $g(x)$ continuous in the interval [1.2715, 1.2725] $\therefore 1.2715 < \beta < 1.2725$ $\therefore \beta = 1.272 (3 \text{ dp})$

Graphs used with permission from DESMOS: <u>https://www.desmos.com/</u>

Graphs used with permission from DESMOS: <u>https://www.desmos.com/</u>

Graphs used with permission from DESMOS: <u>https://www.@etboc.fa</u>ils

10.3) The Newton-Raphson method Chapter CONTENTS

Worked example	Your turn
Using the Newton-Raphson process, state the recurrence relation for the following functions: $f(x) = x^4 - 3$	Using the Newton-Raphson process, state the recurrence relation for the following functions: $f(x) = x_{n+1}^3 - \frac{2}{x_{n+1}} - \frac{(x_n)^3 - 2}{3(x_n)^2}$
$g(x) = \sec x$	$x_{n+1} = x_n - \frac{\frac{g(x)}{\tan x_n}}{\sec^2 x_n} = x_n - \frac{1}{2}\sin(2x_n)$
$h(x) = x^2 + x + 3$	$h(x) = x^{2} - x - 1$ $x_{n+1} = x_{n} - \frac{(x_{n})^{2} - x_{n} - 1}{2x_{n} - 1}$

Worked example	Your turn
Using three iterations of the Newton- Raphson process, starting with $x_0 = 0.5$, solve the equation	Using three iterations of the Newton- Raphson process, starting with $x_0 = 0.5$, solve the equation
$\lambda = \sin \lambda$	Let $f(x) = x - \cos x$ $f'(x) = 1 + \sin x$ $x_{n+1} = x_n - \frac{x_n - \cos(x_n)}{1 + \sin(x_n)}, x_0 = 0.5$ $x_1 = 0.5 - \frac{0.5 - \cos(0.5)}{1 + \sin(0.5)} = 0.7552224$ $x_2 = 0.7391412$ $x_3 = 0.7390851$ x = 0.739 (3 dp)

$$f(x) = \frac{1}{3}x^4 - x^2 + 3x - 1$$

The equation f(x) = 0 has a root α in the interval [-2, -3]

Taking -2.5 as a first approximation to α , apply the Newton-Raphson process once to f(x) to obtain a second approximation to α . Give your answer to 2 decimal places. Your turn

$$g(x) = \frac{1}{2}x^4 - x^3 + x - 3$$

The equation g(x) = 0 has a root β in the interval [-2, -1]Taking -1.5 as a first approximation to β , apply the Newton-Raphson process once to g(x) to obtain a second approximation to β . Give your answer to 2 decimal places.

$$x_{n+1} = x_n - \frac{\frac{1}{2}(x_n)^4 - (x_n)^3 + x_n - 3}{2(x_n)^3 - 3(x_n)^2 + 1}$$

$$\beta_1 = -1.5 - \frac{1.40625}{-12.5} = -1.3875 \dots$$

$$= 1.39 (2 \text{ dp})$$

Worked example	Your turn
$f(x) = 11x^2 - \frac{3}{x^2}$ The equation $f(x) = 0$ has a root α in the	$g(x) = 3x^2 - \frac{11}{x^2}$ The equation $g(x) = 0$ has a root β in the
interval [0, 1]	interval $[1, 2]$
Taking 0.4 as a first approximation to α , apply the Newton-Raphson process once to $f(x)$ to obtain a second approximation to α . Give your answer to 3 decimal places.	Taking 1.4 as a first approximation to β , apply the Newton-Raphson process once to $g(x)$ to obtain a second approximation to β . Give your answer to 3 decimal places.
	$x_{n+1} = x_n - \frac{3(x_n)^2 - \frac{11}{(x_n)^2}}{6x_n + \frac{22}{(x_n)^3}}$
	$\beta_1 = 1.4 - \frac{0.2677}{16.4174} = 1.38369$ $= 1.384 (3 \text{ dp})$

Worked example	Your turn
$f(x) = x^2 - 5x + 8$ State why $x_0 = 2.5$ is not suitable to use as a first approximation to the roots of $f(x)$ when applying the Newton-Raphson method.	$f(x) = x^2 + 7x + 8$ State why $x_0 = -3.5$ is not suitable to use as a first approximation to the roots of $f(x)$ when applying the Newton-Raphson method.
	$f'(x) = 2x + 7 = 0 \Rightarrow x = -3.5$ Turning point at $x = -3.5$ f'(-3.5) = 0 You cannot divide by 0 in the Newton- Raphson method. Also the tangent to $y = f(x)$ at $x = -3.5$ would be horizontal, and therefore never intersect the <i>x</i> -axis.

10.4) Applications to modelling

Worked example	Your turn
The price of a car in £s, x years after purchase, is modelled by the function $f(x) = 5000 (0.58)^x - 100 \sin x$, $x > 0$ (a) Use the model to find the value, to the nearest hundred £s, of the car 5 years after purchase.	The price of a car in £s, x years after purchase, is modelled by the function $g(x) = 15000 (0.85)^x - 1000 \sin x$, $x > 0$ (a) Use the model to find the value, to the nearest hundred £s, of the car 10 years after purchase. (a) £3500

Worked example	Your turn
The price of a car in £s, x years after purchase, is modelled by the function $f(x) = 5000 (0.58)^x - 100 \sin x$, $x > 0$ (a) Use the model to find the value, to the nearest hundred £s, of the car 5 years after purchase. (b) Show that $f(x)$ has a root between 7 and 8.	The price of a car in £s, x years after purchase, is modelled by the function $g(x) = 15000 (0.85)^x - 1000 \sin x$, $x > 0$ (a) Use the model to find the value, to the nearest hundred £s, of the car 10 years after purchase. (b) Show that $g(x)$ has a root between 19 and 20. (b) g(19) = 543.11 > 0 g(20) = -331.55 < 0 Change of sign and $g(x)$ continuous in the interval [19, 20] \therefore root in the interval [19, 20]

Worked example	Your turn
The price of a car in £s, x years after purchase, is modelled by the function $f(x) = 5000 (0.58)^x - 100 \sin x$, $x > 0$	The price of a car in £s, x years after purchase, is modelled by the function $g(x) = 15000 (0.85)^{x} - 1000 \sin x$, $x > 0$
(a) Use the model to find the value, to the nearest hundred £s, of the car 5 years after purchase.	(a) Use the model to find the value, to the hearest hundred £s, of the car 10 years after purchase.
 (b) Show that f(x) has a root between 7 and 8. (c) Taking 7.5 as a first approximation, apply the Newton-Raphson method once to f(x) to obtain a second approximation for the time when the value of the car is zero. Give your answer to 3 decimal places. 	 (b) Show that g(x) has a root between 19 and 20. (c) Taking 19.5 as a first approximation, apply the Newton-Raphson method once to g(x) to obtain a second approximation for the time when the value of the car is zero. Give your answer to 3 decimal places (c) g'(x) = (15 000)(0.85)^x(ln 0.85) - 1000 cos x
	$g(19.5) = 15000(0.85)^{19.5} - 1000 \sin(19.5)$ = 25.0693 $g'(19.5) = 15000(0.85)^{19.5} (\ln 0.85) - 1000 \cos(19.5)$ = -893.3009
	$x_1 = 19.5 - \frac{g(19.5)}{g'(19.5)} = 19.528 (3 \text{ dp})$

Worked example	Your turn
The price of a car in £s, <i>x</i> years after purchase, is modelled by the function	The price of a car in \pounds s, x years after purchase, is modelled by the function
(a) Use the model to find the value, to the nearest hundred fs, of the car 5 years after purchase.	$g(x) = 15000 (0.85)^x - 1000 \sin x$, $x > 0$ (a) Use the model to find the value, to the nearest hundred £s, of the car 10 years after purchase.
(b) Show that $f(x)$ has a root between 7 and 8.	(b) Show that $g(x)$ has a root between 19 and 20.
(c) Taking 7.5 as a first approximation, apply the Newton- Raphson method once to $f(x)$ to obtain a second approximation for the time when the value of the car is zero. Give your answer to 3 decimal places.	(c) Taking 19.5 as a first approximation, apply the Newton-Raphson method once to $g(x)$ to obtain a second approximation for the time when the value of the car is zero. Give your answer to 3 decimal places.
(d) Criticise this model with respect to the value of the car as it gets older.	(d) Criticise this model with respect to the value of the car as it gets older.
	(d) In reality, the car can never have a negative value so this model is not reasonable for cars that are approximately 20 or more years old.