10) Numerical methods

10.1) Locating roots
10.2) Iteration
10.3) The Newton-Raphson method
10.4) Applications to modelling

Show that $f(x)=e^{x}+3 x-2$ has a root between $x=0.2$ and $x=0.3$

Show that $f(x)=e^{x}+2 x-3$ has a root
between $x=0.5$ and $x=0.6$

$$
\begin{aligned}
& f(0.5)=-0.351 \ldots<0 \\
& f(0.6)=0.022 \ldots>0
\end{aligned}
$$

Change of sign and $f(x)$ continuous in the interval [0.5, 0.6]
\therefore Root in the interval $[0.5,0.6]$

Your turn

Explain why there are no real roots to
$f(x)=\frac{1}{x-2}$ between $x=1$ and $x=3$

Explain why there are no real roots to
$f(x)=\frac{1}{x}$ between $x=-1$ and $x=1$
$f(x)$ not continuous in the interval
$[-1,1]$

Worked example

Your turn

Using the same axes, sketch the graphs of $y=e^{x}$ and $y=\frac{1}{x}$
a) Explain how your diagram shows that the function $f(x)=e^{x}-\frac{1}{x}$ has only one root

Using the same axes, sketch the graphs of $y=\ln x$ and $y=\frac{1}{x}$
a) Explain how your diagram shows that the function $f(x)=\ln x-\frac{1}{x}$ has only one root
a) The lines intersect where $\ln x=\frac{1}{x} \rightarrow \ln x-\frac{1}{x}=0$

Thus the roots of $f(x)$ correspond to the points of intersection, and there is only one point of intersection on the graph.

Your turn

Using the same axes, sketch the graphs of $y=e^{x}$ and $y=\frac{1}{x}$
a) Explain how your diagram shows that the function $f(x)=e^{x}-\frac{1}{x}$ has only one root
b) Show that this root lies in the interval $0.5<x<0.6$

Using the same axes, sketch the graphs of $y=\ln x$ and $y=\frac{1}{x}$
a) Explain how your diagram shows that the function $f(x)=\ln x-\frac{1}{x}$ has only one root
b) Show that this root lies in the interval $1.7<x<1.8$
b)

$$
\begin{aligned}
& f(1.7)=-0.0576 \ldots<0 \\
& f(1.8)=0.0322 \ldots>0
\end{aligned}
$$

Change of sign and $f(x)$ continuous in the interval [1.7, 1.8]
\therefore Root in the interval $[1.7,1.8]$

Your turn

Using the same axes, sketch the graphs of $y=e^{x}$ and $y=\frac{1}{x}$
a) Explain how your diagram shows that the function $f(x)=e^{x}-\frac{1}{x}$ has only one root
b) Show that this root lies in the interval $0.5<x<0.6$
c) Show that the root is 0.567 to 3 decimal places

Using the same axes, sketch the graphs of $y=\ln x$ and $y=\frac{1}{x}$
a) Explain how your diagram shows that the function $f(x)=\ln x-\frac{1}{x}$ has only one root
b) Show that this root lies in the interval $1.7<x<1.8$
c) Show that the root is 1.763 to 3 decimal places
c) $\quad f(1.7625)=-0.00064<0$ $f(1.7635)=0.00024>0$
Change of sign and $f(x)$ continuous in the interval $[1.7625,1.7635$]
$\therefore 1.7625<\alpha<1.7635$,
$\therefore \alpha=1.763$ correct to 3 dp .

$$
f(x)=x^{2}-5 x-3
$$

a) Show that $f(x)=0$ can be written as:
i) $x=\frac{x^{2}-3}{5}$
ii) $x=\sqrt{5 x+3}$

$$
g(x)=x^{2}-6 x+2
$$

a) Show that $g(x)=0$ can be written as:

$$
\begin{array}{lll}
\text { i) } x=\frac{x^{2}+2}{6} & \text { ii) } x=\sqrt{6 x-2} & \text { iii) } x=6-\frac{2}{x}
\end{array}
$$

a) Shown

$$
f(x)=x^{2}-5 x-3
$$

a) Show that $f(x)=0$ can be written as: i) $x=\frac{x^{2}-3}{5}$
ii) $x=\sqrt{5 x+3}$
iii) $x=5+\frac{3}{x}$
b) Starting with $x_{0}=3$ use each iterative formula to find a root of the equation $f(x)=0$, rounding your answers to 3 decimal places
$g(x)=x^{2}-6 x+2$
a) Show that $g(x)=0$ can be written as:
i) $x=\frac{x^{2}+2}{6}$
ii) $x=\sqrt{6 x-2}$
iii) $x=6-\frac{2}{x}$
b) Starting with $x_{0}=4$ use each iterative formula to find a root of the equation $g(x)=0$, rounding your answers to 3 decimal places
b) i) $x=0.354$ (3 dp)
ii) $x=5.646(3 \mathrm{dp})$
iii) $x=5.646$ (3 dp)

Worked example

Your turn

$$
f(x)=e^{x-2}+x-5
$$

$$
f(x)=e^{x-1}+x-6
$$

a) Show that $f(x)=0$ can be written as:

$$
x=\ln (5-x)+2, \quad x<5
$$

a) Show that $f(x)=0$ can be written as:

$$
x=\ln (6-x)+1, \quad x<6
$$

a) Shown

Worked example

Your turn

$$
f(x)=e^{x-2}+x-5
$$

a) Show that $f(x)=0$ can be written as:

$$
x=\ln (5-x)+2, \quad x<5
$$

The root of $f(x)=0$ is α.
The iterative formula

$$
x_{n+1}=\ln \left(5-x_{n}\right)+2, \quad x_{0}=3
$$ is used to find an approximate value for α b) Calculate the values of x_{1}, x_{2} and x_{3} to four

decimal places.

$$
f(x)=e^{x-1}+x-6
$$

a) Show that $f(x)=0$ can be written as:

$$
x=\ln (6-x)+1, \quad x<6
$$

The root of $f(x)=0$ is β.
The iterative formula

$$
x_{n+1}=\ln \left(6-x_{n}\right)+1, \quad x_{0}=2
$$

is used to find an approximate value for β
b) Calculate the values of x_{1}, x_{2} and x_{3} to four
decimal places.
b)
$x_{0}=2$
$x_{1}=\ln (6-2)+1$
$=2.3863$
$x_{2}=2.2847 \ldots$
$x_{3}=2.3125$

Worked example

$$
f(x)=e^{x-2}+x-5
$$

a) Show that $f(x)=0$ can be written as:

$$
x=\ln (5-x)+2, \quad x<5
$$

The root of $f(x)=0$ is α.
The iterative formula

$$
x_{n+1}=\ln \left(5-x_{n}\right)+2, \quad x_{0}=3
$$

is used to find an approximate value for α
b) Calculate the values of x_{1}, x_{2} and x_{3} to four
decimal places.
c) By choosing a suitable interval, show that $\alpha=2.792$ correct to 3 decimal places.

Your turn

$$
f(x)=e^{x-1}+x-6
$$

a) Show that $f(x)=0$ can be written as:

$$
x=\ln (6-x)+1, \quad x<6
$$

The root of $f(x)=0$ is α.
The iterative formula

$$
x_{n+1}=\ln \left(6-x_{n}\right)+1, \quad x_{0}=2
$$

is used to find an approximate value for α
b) Calculate the values of x_{1}, x_{2} and x_{3} to four
decimal places.
c) By choosing a suitable interval, show that $\beta=2.307$ correct to 3 decimal places.
c)
$f(2.3065)=-0.00027 \ldots<0$
$f(2.3075)=0.0044 \ldots>0$
Sign change and $g(x)$ continuous in the interval [2.3065, 2.3075]
$\therefore 2.3065<\beta<2.3075$
$\therefore \beta=2.307$ (3dp)

$$
f(x)=x^{3}-5 x^{2}-3 x+2
$$

(a) Show that the equation $f(x)=0$ has a root in the interval $5<x<6$.

$$
g(x)=x^{3}-3 x^{2}-2 x+5
$$

(a) Show that the equation $g(x)=0$ has a root in the interval $3<x<4$.
(a)
$g(3)=-1<0$
$g(4)=13>0$
Change of sign and $g(x)$ continuous in the interval [3, 4]
\therefore root in the interval $[3,4]$

Worked example

$$
f(x)=x^{3}-5 x^{2}-3 x+2
$$

(a) Show that the equation $f(x)=0$ has a root in the interval $5<x<6$.
(b) Use the iterative formula

$$
x_{n+1}=\sqrt{\frac{x_{n}^{3}-3 x_{n}+2}{5}}
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 4 decimal places, and taking:
(i) $x_{0}=0.5$
(ii) $x_{0}=6$

Your turn

$$
g(x)=x^{3}-3 x^{2}-2 x+5
$$

(a) Show that the equation $g(x)=0$ has a root in the interval $3<x<4$.
(b) Use the iterative formula

$$
x_{n+1}=\sqrt{\frac{x_{n}^{3}-2 x_{n}+5}{3}}
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 4 decimal places, and taking:
(i) $x_{0}=1.5$
(ii) $x_{0}=4$
(b)
i)
$x_{1}=\sqrt{\frac{1.5^{3}-2(1.5)+5}{3}}=1.3385 \ldots$
$x_{2}=1.2544 \ldots$
$x_{3}=1.2200 \ldots$
Convergent as the change in the root on each iteration is
decreasing. The iterative method will find the root.
ii)
$x_{1}=\sqrt{\frac{4^{3}-2(4)+5}{3}}=4.5092 \ldots$
$x_{2}=5.4058$
$x_{3}=7.1219 \ldots$
Divergent as the change in the root on each iteration is increasing.
The iterative method has failed to find the root.

Worked example

Your turn

$$
f(x)=x^{3}+4 x^{2}+3 x-12
$$

(a) Show that the equation can be written as

$$
x=\sqrt{\frac{3(4-x)}{4+x}}, x \neq-4
$$

$$
g(x)=x^{3}+3 x^{2}+4 x-12
$$

(a) Show that the equation can be written as

$$
x=\sqrt{\frac{4(3-x)}{3+x}}, x \neq-3
$$

(a) Shown

Worked example

Your turn

$$
f(x)=x^{3}+4 x^{2}+3 x-12
$$

(a) Show that the equation can be written as

$$
x=\sqrt{\frac{3(4-x)}{4+x}}, x \neq-4
$$

The equation $f(x)=0$ has a single root between 1 and 2 .
(b) Use the iterative formula

$$
x_{n+1}=\sqrt{\frac{4\left(3-x_{n}\right)}{3+x_{n}}}, n \geq 0, x_{0}=1
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 2 decimal places.

$$
g(x)=x^{3}+3 x^{2}+4 x-12
$$

(a) Show that the equation can be written as

$$
x=\sqrt{\frac{4(3-x)}{3+x}}, x \neq-3
$$

The equation $g(x)=0$ has a single root between 1 and 2 .
(b) Use the iterative formula

$$
x_{n+1}=\sqrt{\frac{4\left(3-x_{n}\right)}{3+x_{n}}}, n \geq 0, x_{0}=1
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 2 decimal places.
(b)
$x_{1}=\sqrt{\frac{4(3-1)}{3+1}}=1.41$
$x_{2}=1.20$
$x_{3}=1.31$

Worked example

$$
f(x)=x^{3}+4 x^{2}+3 x-12
$$

(a) Show that the equation can be written as

$$
x=\sqrt{\frac{3(4-x)}{4+x}}, x \neq-4
$$

The equation $f(x)=0$ has a single root between 1 and 2 .
(b) Use the iterative formula

$$
x_{n+1}=\sqrt{\frac{4\left(3-x_{n}\right)}{3+x_{n}}}, n \geq 0, x_{0}=1
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 2 decimal places.
(c) The root of $f(x)=0$ is α. By choosing a suitable interval, prove that $\alpha=1.253$ (3 dp)

Your turn

$$
g(x)=x^{3}+3 x^{2}+4 x-12
$$

(a) Show that the equation can be written as

$$
x=\sqrt{\frac{4(3-x)}{3+x}}, x \neq-3
$$

The equation $g(x)=0$ has a single root between 1 and 2 .
(b) Use the iterative formula

$$
x_{n+1}=\sqrt{\frac{4\left(3-x_{n}\right)}{3+x_{n}}}, n \geq 0, x_{0}=1
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 2 decimal places.
(c) The root of $g(x)=0$ is β. By choosing a suitable interval, prove that $\beta=1.272$ (3 dp)
(c)

$$
\begin{aligned}
& g(1.2715)=-0.00821 \ldots<0 \\
& g(1.2725)=0.00827 \ldots>0
\end{aligned}
$$

Sign change and $g(x)$ continuous in the interval [1.2715, 1.2725]
$\therefore 1.2715<\beta<1.2725$
$\therefore \beta=1.272$ (3 dp)

Your turn

Use the graph of $y=x$ and $y=\sqrt{x+3}$ to solve the equation

$$
x^{2}-x-3=0
$$

using the recurrence relation:

$$
x_{n+1}=\sqrt{x_{n}+3}, x_{0}=1
$$

Use the graph of $y=x$ and $y=\sqrt{x+1}$ to solve the equation

$$
x^{2}-x-1=0
$$

using the recurrence relation:

$$
x_{n+1}=\sqrt{x_{n}+1}, x_{0}=1
$$

Staircase diagram converging to root

Worked example

Your turn

Use the graph of $y=x$ and $y=\frac{3}{x-1}$ to solve the equation

$$
x^{2}-x-3=0
$$

using the recurrence relation:

$$
x_{n+1}=\frac{3}{x_{n}-1}, x_{0}=-4.5
$$

Use the graph of $y=x$ and $y=\frac{1}{x-1}$ to solve the equation

$$
x^{2}-x-1=0
$$

using the recurrence relation:

$$
x_{n+1}=\frac{1}{x_{n}-1}, x_{0}=-2.5
$$

Cobweb diagram converging to root
Graphs used with permission from DESMOS: https://www.desmos.com/

Your turn

Use the graph of $y=x$ and $y=x^{2}-3$ to solve the equation

$$
x^{2}-x-3=0
$$

using the recurrence relation:

$$
x_{n+1}=x_{n}^{2}-3, x_{0}=3
$$

Use the graph of $y=x$ and $y=x^{2}-1$ to solve the equation

$$
x^{2}-x-1=0
$$

using the recurrence relation:

$$
x_{n+1}=x_{n}^{2}-1, x_{0}=2
$$

Root approximations diverging - iterative Graphs used with permission from DESMOS: https://www. 1 Resthadedails

Using the Newton-Raphson process, state the recurrence relation for the following functions:

$$
\begin{aligned}
& f(x)=x^{4}-3 \\
& g(x)=\sec x \\
& h(x)=x^{2}+x+3
\end{aligned}
$$

Using the Newton-Raphson process, state the recurrence relation for the following functions:

$$
\begin{gathered}
\left.f(x)=x^{3}-\right)^{3}-2 \\
x_{n+1}=x_{n}-\frac{\left.x_{n}\right)^{2}}{3\left(x_{n}\right)^{2}} \\
x_{n+1}=x_{n}-\frac{q(x)=\tan x}{\sec ^{2} x_{n}}=x_{n}-\frac{1}{2} \sin \left(2 x_{n}\right) \\
h(x)=x^{2}-x-1 \\
x_{n+1}=x_{n}-\frac{\left(x_{n}\right)^{2}-x_{n}-1}{2 x_{n}-1}
\end{gathered}
$$

Your turn

Using three iterations of the NewtonRaphson process, starting with $x_{0}=0.5$, solve the equation

$$
x=\sin x
$$

Using three iterations of the NewtonRaphson process, starting with $x_{0}=0.5$, solve the equation

$$
x=\cos x
$$

Let $f(x)=x-\cos x$

$$
f^{\prime}(x)=1+\sin x
$$

$$
x_{n+1}=x_{n}-\frac{x_{n}-\cos \left(x_{n}\right)}{1+\sin \left(x_{n}\right)}, x_{0}=0.5
$$

$$
x_{1}=0.5-\frac{0.5-\cos (0.5)}{1+\sin (0.5)}=0.7552224 \ldots
$$

$$
x_{2}=0.7391412
$$

$$
x_{3}=0.7390851
$$

$$
x=0.739(3 \mathrm{dp})
$$

Your turn

$$
f(x)=\frac{1}{3} x^{4}-x^{2}+3 x-1
$$

The equation $f(x)=0$ has a root α in the interval $[-2,-3]$
Taking -2.5 as a first approximation to α, apply the Newton-Raphson process once to $f(x)$ to obtain a second approximation to α. Give your answer to 2 decimal places.

$$
g(x)=\frac{1}{2} x^{4}-x^{3}+x-3
$$

The equation $g(x)=0$ has a root β in the interval $[-2,-1]$
Taking -1.5 as a first approximation to β, apply the Newton-Raphson process once to $g(x)$ to obtain a second approximation to β. Give your answer to 2 decimal places.

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{\frac{1}{2}\left(x_{n}\right)^{4}-\left(x_{n}\right)^{3}+x_{n}-3}{2\left(x_{n}\right)^{3}-3\left(x_{n}\right)^{2}+1} \\
\beta_{1} & =-1.5-\frac{1.40625}{-12.5}=--1.3875 \ldots \\
& =1.39(2 \mathrm{dp})
\end{aligned}
$$

Your turn

$$
f(x)=11 x^{2}-\frac{3}{x^{2}}
$$

The equation $f(x)=0$ has a root α in the interval [0, 1]
Taking 0.4 as a first approximation to α, apply the Newton-Raphson process once to $f(x)$ to obtain a second approximation to α. Give your answer to 3 decimal places.

$$
g(x)=3 x^{2}-\frac{11}{x^{2}}
$$

The equation $g(x)=0$ has a root β in the interval [1, 2]
Taking 1.4 as a first approximation to β, apply the Newton-Raphson process once to $g(x)$ to obtain a second approximation to β. Give your answer to 3 decimal places.

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{3\left(x_{n}\right)^{2}-\frac{11}{\left(x_{n}\right)^{2}}}{6 x_{n}+\frac{22}{\left(x_{n}\right)^{3}}} \\
\beta_{1} & =1.4-\frac{0.2677 \ldots}{16.4174 \ldots}=1.38369 \ldots \\
& =1.384(3 \mathrm{dp})
\end{aligned}
$$

$$
f(x)=x^{2}-5 x+8
$$

State why $x_{0}=2.5$ is not suitable to use as a first approximation to the roots of $f(x)$ when applying the Newton-Raphson method.

State why $x_{0}=-3.5$ is not suitable to use as a first approximation to the roots of $f(x)$ when applying the Newton-Raphson method.
$f^{\prime}(x)=2 x+7=0->x=-3.5$
Turning point at $x=-3.5$
$f^{\prime}(-3.5)=0$
You cannot divide by 0 in the NewtonRaphson method.
Also the tangent to $y=f(x)$ at $x=-3.5$ would be horizontal, and therefore never intersect the x-axis.

Your turn

The price of a car in $£ s, x$ years after purchase, is modelled by the function

$$
f(x)=5000(0.58)^{x}-100 \sin x, \quad x>0
$$

(a) Use the model to find the value, to the nearest hundred $£ \mathrm{~s}$, of the car 5 years after purchase.

The price of a car in $£ s, x$ years after purchase, is modelled by the function

$$
g(x)=15000(0.85)^{x}-1000 \sin x, \quad x>0
$$

(a) Use the model to find the value, to the nearest hundred $£ s$, of the car 10 years after purchase.
(a) $£ 3500$

Worked example

Your turn

The price of a car in $£ s, x$ years after purchase, is modelled by the function

$$
f(x)=5000(0.58)^{x}-100 \sin x, \quad x>0
$$

(a) Use the model to find the value, to the nearest hundred $£ s$, of the car 5 years after purchase.
(b) Show that $f(x)$ has a root between 7 and 8 .

The price of a car in $£ \mathrm{f}, x$ years after purchase, is modelled by the function

$$
g(x)=15000(0.85)^{x}-1000 \sin x, \quad x>0
$$

(a) Use the model to find the value, to the nearest hundred $£ s$, of the car 10 years after purchase.
(b) Show that $g(x)$ has a root between 19 and 20.
(b)
$g(19)=543.11 \ldots>0$
$g(20)=-331.55 \ldots<0$
Change of sign and $g(x)$ continuous in the interval [19, 20]
\therefore root in the interval $[19,20]$

Worked example

Your turn

The price of a car in $£ s, x$ years after purchase, is modelled by the function

$$
f(x)=5000(0.58)^{x}-100 \sin x, \quad x>0
$$

(a) Use the model to find the value, to the nearest hundred $£ s$, of the car 5 years after purchase.
(b) Show that $f(x)$ has a root between 7 and 8 .
(c) Taking 7.5 as a first approximation, apply the NewtonRaphson method once to $f(x)$ to obtain a second approximation for the time when the value of the car is zero. Give your answer to 3 decimal places.

The price of a car in $£ s, x$ years after purchase, is modelled by the function

$$
g(x)=15000(0.85)^{x}-1000 \sin x, \quad x>0
$$

(a) Use the model to find the value, to the nearest hundred $£ s$, of the car 10 years after purchase.
(b) Show that $g(x)$ has a root between 19 and 20.
(c) Taking 19.5 as a first approximation, apply the Newton-Raphson method once to $g(x)$ to obtain a second approximation for the time when the value of the car is zero. Give your answer to 3 decimal places.
(c)
$g^{\prime}(x)=(15000)(0.85)^{x}(\ln 0.85)-1000 \cos x$
$g(19.5)=15000(0.85)^{19.5}-1000 \sin (19.5)$ $=25.0693 \ldots$
$g^{\prime}(19.5)=15000(0.85)^{19.5}(\ln 0.85)-1000 \cos (19.5)$

$$
=-893.3009 \ldots
$$

$x_{1}=19.5-\frac{g(19.5)}{g^{\prime}(19.5)}=19.528(3 \mathrm{dp})$

Worked example

Your turn

The price of a car in $£ s, x$ years after purchase, is modelled by the function

$$
f(x)=5000(0.58)^{x}-100 \sin x, \quad x>0
$$

(a) Use the model to find the value, to the nearest hundred $£ s$, of the car 5 years after purchase.
(b) Show that $f(x)$ has a root between 7 and 8.
(c) Taking 7.5 as a first approximation, apply the NewtonRaphson method once to $f(x)$ to obtain a second approximation for the time when the value of the car is zero. Give your answer to 3 decimal places.
(d) Criticise this model with respect to the value of the car as it gets older.

The price of a car in $£ s, x$ years after purchase, is modelled by the function

$$
g(x)=15000(0.85)^{x}-1000 \sin x, \quad x>0
$$

(a) Use the model to find the value, to the nearest hundred $£ s$, of the car 10 years after purchase.
(b) Show that $g(x)$ has a root between 19 and 20.
(c) Taking 19.5 as a first approximation, apply the Newton-Raphson method once to $g(x)$ to obtain a second approximation for the time when the value of the car is zero. Give your answer to 3 decimal places.
(d) Criticise this model with respect to the value of the car as it gets older.
(d) In reality, the car can never have a negative value so
this model is not reasonable for cars that are
approximately 20 or more years old.

